Page 3 - 風機運維之結構振動與診斷
P. 3

結構振動特性研究(1)









            • 結構動力系統特徵與解析




      Data-Driven Stochastic Subspace Identification (Data-Driven SSI)
                                                                                                                                             輸入                系統                輸出
                                                                                  
                                                                                                                      A
      1.The discrete-time state space model:   3.Calculate the orthogonal projection matrix     :  6.Extract the system matrix      and
                                                                                    i
                                                                                                   the observer matrix     :
                                                                                                                 C
                                                                         †
                                                                               
                 x k 1    Ax   k  Bu k             Y Y   Y Y p T  Y Y  T  Y   li j            C    CA 
                                                                f
                                                                     p p
                                                                           p
                                                     i
                                                         f
                                                            p
                                                                                                          †
                 y   Cx   Du                  where                                               
                  k    k    k                                                                         CA     CA 2 
       where                                     /   :  Matrix projection operator               A             2n 2n
       x   2n 1   : State vector              †  :  Pseudo inverse operator                                
        k                                                                                              i  2    i  1 
       u   m 1   :  Input vector                                                                   CA    CA  
        k
       y   l 1   :  Output vector                                                              C    the first   rows of      l   i    l 2n
        k
       A , ,  and    :  System parameter matricesB C  D
                                                        
                                              4.Factorize       by using the singular value
                                                         i
                                                 decomposition and determine the system order n:
                                                                    S 1  0   V    1 T  T  7.Distinguish the noise modes
                                                       T
     2.Form the output Hankel matrix    : Y       USV   U 1  U 2       T     U S V
                                                                                 1 1 1
                                                 i
                                                                    0  S 2     V 2      i.Output Modal Amplitude Coherence (OMAC)
            y 0  y 1   y j 1                where
                                             U    li 2n ,  S   2n 2n ,  V   j 2n    ii.Phase Verification
            y 1  y 2    y j                    1        1         1
                            
            y   y      y        Y 
       Y     i 1  i   i j  2      p      2li j
            y  y        y       Y               5.Calculate the extended observability
            i   i 1     i j  1    f           matrix     :                               8.Determine the modal properties
                                                           
            y i 1  y i 2  y i j                        i
                                                                 C                               Natural frequency  :   k
                                                                 CA                              Damping ratio  :   k
            y 2 1i  y 2i  y 2i j     2                1/2    2    li 2n                    Mode shape  :   k
      where                                              U S        CA     
                                                           1 1
                                                        i
      Y   li j    :  Past-part output Hankel matrix                
       p
      Y   li j    :  Future-part output Hankel matrix              CA   i 1      By Dr. Weng
       f
   1   2   3   4   5   6   7   8