NAMR-S-111001 (自行研究報告)

漂流廢棄物之輸出模式實驗 (正式報告)

中華民國 111 年 12 月

NAMR-S-111001 (自行研究報告)

漂流廢棄物之輸出模式實驗 (正式報告)

主辦單位:本院海洋產業及工程中心

研究人員:楊文榮、賴堅戊

研究期程:中華民國 111年1月至111年12月

研究經費:新臺幣0萬元

中華民國 111 年 12 月

「本研究報告絕無侵害他人智慧財產權之情事,如有違背願自負民、刑事責任。」

NAMR-S-111001

漂流廢棄物之輸出模式實驗

國家海洋研究院

目 次

表	次		II
圖	次		III
提	要		III
Ab	ostract		VII
第	一章	研究緣起與背景	1
第	二章	研究方法及過程	2
第	三章	重要發現	30
第	四章	主要建議事項	31
致	謝		32
參	考文獻		33
附:	錄		

表次

表1、	實驗所用海洋儀器設備及器材	9
表 2、	浮球組的配重與球冠高度	24

圖次

圖 1、聯合國 17 項永續發展目標(SDGs)	1
圖 2、實驗海域位於安平外海,水深 50 公尺的近岸海域內	3
圖 3 、Leeway(L)是順風(DWL)與側風(CWL)的合成向量	3
圖 4、船舶航行時受到海流及風的交互作用影響,船舶航行的軌跡改變	4
圖 5、實驗租用船隻(海環號)	7
圖 6、實驗儀器架設示意圖	7
圖 7、海流儀固定於船底支架	8
圖 8、船舶向量受到風向量影響航向及航速	8
圖 9、各類海廢漂流物	10
圖 10、浮球及 AIS 發報器	11
圖 11、浮球組佈放照片紀錄	11
圖 12、模型假人及模型假豬漂流物佈放照片紀錄	12
圖 13、所有漂流物佈放之空派照片紀錄	12
圖 14、漂流物固定漁網定位器的照片記錄	13
圖 15、11 月 14 日海流速度時間序列圖	18
圖 16、11 月 14 日海流方向時間序列圖	18
圖 17、11 月 14 日海流流速流向玫瑰圖	19
圖 18、11 月 14 日海流 N、E 向量及流矢圖	19
圖 19、11 月 14 日風速時間序列圖	20
圖 20、11 月 14 日風向時間序列圖,	20
圖 21、11 月 14 日風速玫瑰圖	21
圖 22、11 月 14 日的風場之 U、V 向量及風矢圖	21
圖 23、11 月 14 日所有漂流物包含浮球組之軌跡分布圖	22
圖 24、各類漂流物的漂流軌跡分布圖	22
圖 25、浮球組的漂流軌跡分布圖	23
圖 26、浮球組的向量及流矢圖	23
圖 27、球冠高度	24
圖 28、相對風向 (RWD) 和偏航角 (La) 之間的關係。	28
圖 29、左圖相對風順風右側的漂移為正,右圖順風左側的漂移為負	28
圖 30、漸進向量圖(PVD)	29

啚	31	`	圖左線性回歸零風速不受約束,圖右線性回歸截距為零2	9
昌	32	,	浮球的線性回歸2	9
圖	33	,	浮球組受到大小不同的風壓情形3	0

附錄

附錄一、ADCP數據

附錄二、風速數據

附錄三、浮球 A 數據

提要

關鍵詞:海洋廢棄物、海洋垃圾、風壓差、

一、研究緣起

海洋廢棄物主要為人造生活廢棄物,很大比例源自陸地河川的輸送。自2015 聯合國倡議海洋永續,海廢治理漸漸成為備受關注的議題,透過調查、統計追蹤溯源,透過實驗收集海漂廢棄物的軌跡,為何會成為海廢熱點,利用數值模式回推軌跡,可以得知海廢的奇幻漂流歷程;海廢不只受到海流的作用力之外,尚受到大氣風力的作用,這正是海洋與大氣的交互作用影響著全球海洋廢棄物的傳送路徑,這海氣交互作用就是所謂的風壓差,各種海洋廢棄物的種類、型態、密度、體積都不同,所以每種廢漂廢棄物都具備不同的風壓差係數,因此透過累積多次的海上實驗,蒐集並建立風壓差,對於掌握海洋廢棄物的來去,能夠導入數值模式,進而獲得海廢治理的參考。

爰此,本案計畫之目的為記錄不同形體之漂流物於近海之軌跡變化,結合現場海流與氣象觀測,轉換為風壓差數據做為漂流數值模擬與驗證,並規劃河口漂流物之釋放與收回實驗,累積陸源性與海源性廢棄物漂流之追蹤及溯源之能量,提升對我國海域之廢棄物分佈與來源之掌握。

二、研究方法及過程

本研究透過勞務委託方式,連續三年自 109 至 111 年,進行委託進行廠商進行海上實驗,收集數據,後續進行數據分析,委託海洋漂流物實驗主要有三部分:1)操作海流儀器,收集表層海流、2)架設風速儀,收集風速、風向變化、3)佈放與回收漂流物並記錄各種漂流物的漂流軌跡,所得數據自行分析與處理。

本研究數據取自 109 年海上實驗數據,包含海流、風速、軌跡的原始數據需經過一連串的前處理,海流儀的產出的 N、E 即代表向北、向東向量,等同於垂直即水平向量,為同步三種時間序列資料,再把風速、風向分解成垂直及水平(u、v)向量,以及將漂流物的漂流軌跡,把每個軌跡點位移時間及速度,計算轉換成垂直水平向量,方便進行比對。

三、重要發現

本研究經過實海驗證,1)分解海流向量、風場風向再利用風壓差速率與10 高的風速具用線性關係,求得風壓差速率,再分解成順風與側風分量,可預測漂流物的偏移量,最後比對漂流物軌跡驗證,2)漂流物的非對稱性使漂流軌跡產生或左或右的偏移,且密度較輕且露出海面體積較大的物體,容易受到風力的作用改變軌跡,而且3)隨時間約長,軌跡歧異度越來越大。

四、主要建議事項

為持續進行海廢漂流實驗,期望能收集更多的風壓差參數,但由於海上作業受限於每日必須進出港,每次實驗只能最多八小時實驗就必須回收,無法收集更長時間的變化,未來是否有可能在近岸海域進行多日實驗,便可以獲取更好更多的數據。

Abstract

Keywords: Marine debris, Marine litters, Leeway

I. Purpose

Marine debris is mainly composed of artificial waste from daily life, and a large proportion of it comes from the transportation of rivers on land. Since 2015, the United Nations has advocated for ocean sustainability, and ocean waste management has gradually become a highly concerned issue. Through investigation and statistical tracking of the source, the trajectory of marine debris can be collected through experiments to understand why it has become a hot spot for marine waste. By using numerical models to trace back the trajectory, we can learn about the magical drifting history of ocean waste.

Marine debris is not only affected by ocean currents but also by atmospheric wind force. This is precisely the interaction between the ocean and the atmosphere that affects the global transmission path of marine debris. This ocean-atmosphere interaction is called wind pressure difference. The types, shapes, densities, and volumes of various marine debris are different. Therefore, each type of floating waste has different wind pressure difference coefficients. Therefore, by accumulating multiple sea experiments and collecting and establishing wind pressure differences, numerical models can be introduced to obtain references for marine waste management.

II Methods and Procedures

This study commissioned manufacturers to conduct offshore experiments through labor contracts to collect data. The experiment is mainly divided into two parts: 1) river drift experiment and 2) ocean drift experiment. In the river drift experiment, low-impact wooden boards are used as driftwood to collect the proportion of transmission at the estuary and landing. In the ocean drift experiment, the trajectory of artificial floating objects is recorded, and data from various instruments such as ocean current meters and anemometers are recorded at the same time.

III Results

This study has been verified by sea trials. 1) Decompose the ocean current vector and wind field wind direction, compare the drift trajectory vector, and obtain the wind pressure difference relationship formula. 2) Objects with lighter density and larger volume exposed to the sea surface are easily affected by wind force to change their trajectory. 3) As time goes by, the degree of trajectory ambiguity becomes larger.

IV Suggestions

To continue the marine debris drift experiment and collect more wind pressure difference parameters, it is hoped that more data can be collected. However, due to the limitations of daily entry and exit from the port for offshore operations, each experiment can only last for a maximum of eight hours and must be recovered. It is impossible to collect longer-term changes. In the future, it may be possible to conduct multi-day experiments in nearshore waters to obtain better and more data.

第一章 研究緣起與背景

2015 年聯合國於永續高峰會(United Nations Sustainable Development Summit)發布了17項「永續發展目標」(Sustainable Development Goals,SDGs)如圖 1,目標是於2030年以前,針對全球共同面臨的挑戰,包含氣候變遷、貧富差距等問題提出相對應的解決方案,並以此為標準衡量實踐情形,其中有關海洋的SDGs目標14:保育及永續利用海洋生態系,以確保生物多樣性,並防止海洋環境劣化。

本院為辦理「智慧化海洋安全與環境監測系統建置計畫」,發展「海廢流場預測模式建立」之關鍵技術,自辦台灣周遭海域風壓差實驗任務與實驗規劃,從整體對海洋環境的掌握到風壓差參數的取得,所得觀測數據分析成果除可精進海廢動向預測之數值模擬成效,亦可提升海難搜救優選規劃系統(Search and Rescue Optimal Planning System, SAROPS) 與搜索勤務的掌握。

實驗內容將參考 U.S. Coast Guard 自 1960-2011 年間的實驗方法,陸續在台灣周遭海域於不同季節展開實驗,以獲得在地的風壓差(Leeway)參數;實驗預計租用民間漁船(海環號)於海上佈放多組姿態擬真之漂浮物模型(假人、假豬、竹筏、廢棄物等等)並掛載 AIS信標,預期將可獲得多筆觀測軌跡數據,並同步操作氣象儀器(Comar 220WX)與都普勒海流儀(ADCP 600kHz),收集現場氣象(風速、風向、氣壓)與海流資料,漂流物因受海流與大氣交互作用隨時間產生軌跡歧異,此差異變量關係式即可用來修正海流數值模擬的計算。

SUSTAINABLE GALS DEVELOPMENT GALS

圖 1、聯合國 17 項永續發展目標(SDGs) 圖片來源:聯合國教科文組織

第二章 研究方法及過程

2.1 實驗規劃-海洋廢棄物漂流風壓差收集

本實驗規畫作業地點,為尋求海流環境較為單純的海域,以風壓收集及漂流物軌跡收集作為實驗設計,選擇安平港外海,水深 50 公尺處,該處海流受潮汐影響但不會紊亂,向北貨向南流況相對單純,本此所使用的督普勒海流儀,bottom tracking 量測深度範圍約為 75 公尺,受限於設備的選擇該處水深小於 50 公尺處,該處地形較為平坦,因此適合作為風壓差參數收集之場域,如圖 2。

自第二次世界大戰以來,人們就開始研究風壓差(Leeway),根據美國海岸防衛隊的研究與發展中心(U.S. Coast Guard Research and Development Center)1996、1999年7月的報告 (Report No. CG-D-08-99[1]、CG-D-21-96[2]、CG-D-05-05[3])指出,風壓差(Leeway)是指風壓差速度及角度(angle)、順風(Downwind, DWL)、側風(Crosswind, CWL)分量之間的關係,如圖 3 所示,風壓差向量(L)則是 DWL 與 CWL 的合成向量,風壓差是物體相對於表面海流的運動,這分量由於漂流物外型的不對稱,產生順風向右側或左側漂移現象 (Breivik ,2011) [4]。

了解風壓差對於預測搜救(search and rescue)倖存者和救生艇的的漂移是必要的。除了傳統搜尋與援救之外,可由風速線性回歸獲得風壓差的數值模型(Breivik ,2008) [5] (Maisondieu, 2010)[6],對於搜救執法及海洋環境保護任務,預測任何海面漂流物體的軌跡是至關重要的,美國海岸警衛隊並為各種常見的 SAR 物體開發漂移係數,所有這些現在都作為搜索和救援最佳規劃系統 (SAROPS) 中使用的算法的基礎(J.T. Morris,2008)[7]。

風壓差(leeway)名詞從維基百科解釋:是指由垂直於物體向前運動方向的風的分量,這分量可分為順風分量(Downwind, DWL)及側風分量(Crosswind, CWL),引起漂浮在水中的物體向側風方向漂移的偏移量,尚有許多文獻提及透過海上進行漂流實驗,蒐集風的風壓及分量的分析模型[8][9][10]。《國際航空和海上搜救手冊國家搜救增補》(National Search and Rescue Supplement to the International Aeronautical and Maritime Search and Rescue Manual)將風壓差定義為"因風吹向暴露表面而引起的搜索物體在水中的移動"。暴露較多的物體將在水中經歷更多的風壓差漂移和整體運動,如圖 4 所示,駕駛的航向(steered course)受到海流及風力交互影響,使得船舶行進方向(water track)受到改變,這改變的角度稱之為風壓差角度(Leeway Angle, LA),所受的合成力即為風壓差力(Leeway Force, LF)。

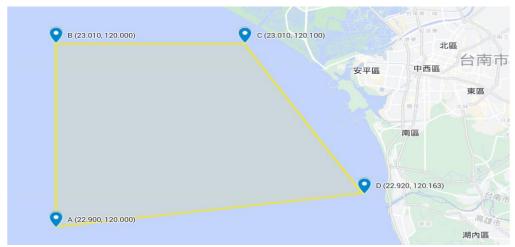


圖 2、實驗海域位於安平外海,水深 50 公尺的近岸海域內

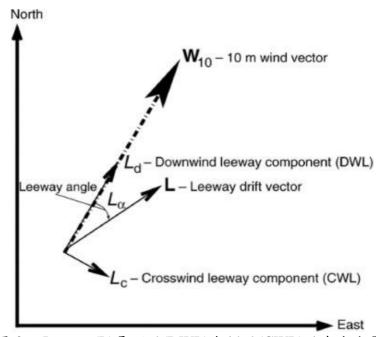


圖 3、Leeway(L)是順風(DWL)與側風(CWL)的合成向量

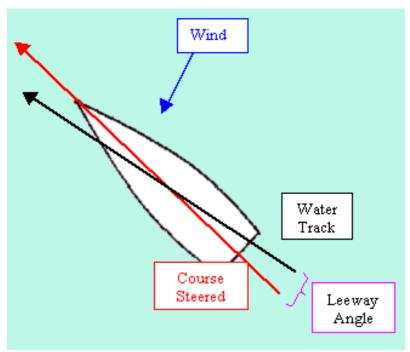


圖 4、船舶航行時受到海流及風的交互作用影響,船舶航行的軌跡改變

2.2 實驗儀器的使用

試驗為取得各種形式的海面漂流物 (特別是台灣特有的、SAROPS 參數表沒有的)在海面風與表面流的作用下,飄 (漂)移軌跡的差異,並進而分析出其風壓差參數,本次實驗規劃兩個科目,第一科目為真人、真豬與假人、假豬等(實驗所模擬漂流物,如表)在實海中漂流 0.5~1 小時的位置差異,確保實驗漂流物具有代表性;第二科目為約 9 類 17 件實驗標的物,實驗租用娛樂漁船(CT2 海環號)如圖 5,架設海流儀、風速儀及 AIS 接收天線,儀器整合是意圖,如圖 6,調查所使用儀器及說明,如表 1,漂流軌跡及海氣象數據收集,實驗同時收集氣象局之潮汐資料,作為參考比對之資料。

為收集漂流軌跡,利用漁民常用之漁網定位器來收集漂流物的漂流 GPS 定位,該設備發報的頻率為 VHF,與 AIS 的發報頻率相同,為簡易的 AIS 發報器的一種;為方便海上作業以這種 AIS 發報器作為漂流物軌跡紀之發報器,將 AIS 發報器固定於漂流物體上如圖 6(2),由於漁船上都有配置 AIS 海圖儀,過程可以從海圖儀上監控是否漂流出範圍,回收時更容易回報即時位置,且與船長溝通無障礙,比起使用 GPS 方便相當多,其通訊成本相對衛星通訊低廉,且接收距離大於 GSM 或 4G 通訊,接收範圍半徑大約可達 20 海浬,並視天線架設的高度決定接收範圍的大小;接收時架設 AIS 天線與船頂,以同軸電纜連接至艙內訊號接收盒,如圖 6(1)所示,所收集資料進行解碼,AIS 解碼程式應用開放源的 Python 自行開發,漁網定位器發報頻率為每分鐘一 筆,AIS 解碼資料僅有 3 欄,包含MMSI 代碼(可自行編改)、經度及緯度,並以接收時間做為發報時間,最後由經緯度計算出每個時間點的移動時間與距離,轉換成位移向量,再內插與分解成每分鐘的垂直與水平向量。所使用的設備型號規格以及相關用途說明列表於表 1。

海流儀工作原理為督普樂原理(Doppler Current Profiler),督普勒海流儀通常應用聲波 向水中發射聲波脈衝。這些聲波脈衝會在水中反射,形成回波,然後被接收器接收。當水流速度與儀器相對運動時,發射和接收的聲波頻率將發生變化,以此變化量測海流流速及流向。海流儀架設於船底,並自行請鐵工廠訂製固定架安裝於船底,如圖 7,本研究所使用的海流儀頻率為 600kHz,適合水深 75 公尺的海域作業,並自行訂製專用支架安裝於海環號的海底艙門鐵板蓋艙外一側;海環號吃水深度約 2 公尺,故量測到的深度應再加上海流支架高度。一般租用娛樂漁船並不是每一艘船都可架設在艙底,大部分是使用特殊夾具夾在船舷操作使用;海流儀利用都卜勒原理量測現場海流的流速與流向,通常海流儀頂部有 3 到 4 個音鼓,發射音鼓的 beam 角設定也是重要的一環,船速、海況也決定數據品質,本研究船儘可能不發動引擎保持隨波逐流,但所量測到的數據仍是相對數據,當從量測資料擷取最近表層的 N、E向量數據,還需要再以扣除 bottom tracking 所獲獲得之船舶對地的絕對速度,藉以修正量測到的海流相對速度,最後,再經過內插出每分鐘一筆的 N、E向量數具。

風速儀,本研究採用之品牌型號為 Airmar 220WX,該型號適合船用之風速儀,因為該風速儀內建 GPS 及 AHRS,可即時將量測到的風速風向修正為真風速與真風向,AHRS 代表姿態和方向參考系統(Attitude and Heading Reference System)。它是一種電子設備,用於測量飛行器、船舶、汽車等運動物體的姿態(包括機身的傾斜角度、機翼的滾轉角度和舵的偏轉角度等)以及方向(通常是指航向或船舶的方向)。由加速度計(Accelerometers)、磁力計(Magnetometers)、陀螺儀(Gyroscopes)整合而成,稱之為航行姿態參考系統,可以提供航向(yaw)、水平翻滾(roll)含垂直搖擺(pitch)的訊息,AHRS 利用這些組件的數據和運算演算法來計算和維護運動物體的姿態和方向,因此,實驗船隻在海上的運動時所量測到的風速風向,可藉由 GPS 及 AHRS,紀錄船舶航行向量,再修正成真風速、風向,船舶與風場的向量合成關係如圖 8。

本次海上漂流物實驗共計 9 類(17 件),如圖 9,包含冰箱、模型假人 2 具(一平躺、一立姿)、模型假豬(一平躺,一立姿)、保麗龍、碰墊、漂流木(一大一小)以及漂流浮球 8 顆。

使用方形的冰箱最主要是因為常有釣客在堤防或礁岩磯釣,因故落海,搜救時只發現冰箱,依此推論搜救範圍;假人也是為模擬落海釣客,並穿有救生衣,立姿模擬存活等待搜救、平躺模擬死亡;假豬則是因為前幾年有關病死豬隻漂流引起恐慌的社會新聞;而漂流木每每經過颱風、暴潮,由山上經河流沖刷下來的漂流木,整片堆積於近岸或港灣,影響船舶航行安全;保麗龍、碰墊是漁民、養殖戶常用物件;實驗浮球經過改造,配重填充且固定於球體內底部,求頂部開模設計連接環,可結合 AIS 發報器,如圖10,本實驗使用8顆浮球共分成四組,每組2顆,分組依據浮力劃分,將浮球浮力分三等份,其中2/3浮力再分成兩組,一組加拖曳尾巴,增加受海流分項作用力影響的對照組,浮球半徑30公分、浮力15公斤。

實驗過程的照片記錄請參見圖 11、圖 12、圖 13,以及圖 14 漂流物固定漁網定位器照片。

圖 5、實驗租用船隻(海環號)

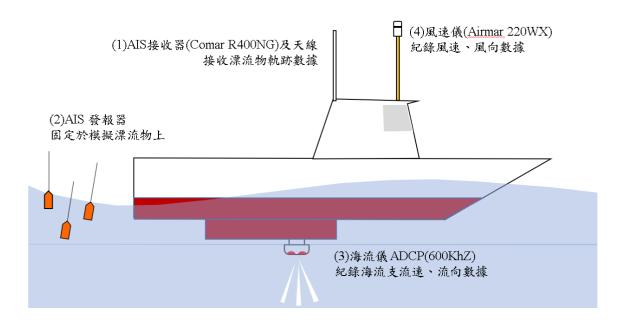


圖 6、實驗儀器架設示意圖

圖7、海流儀固定於船底支架

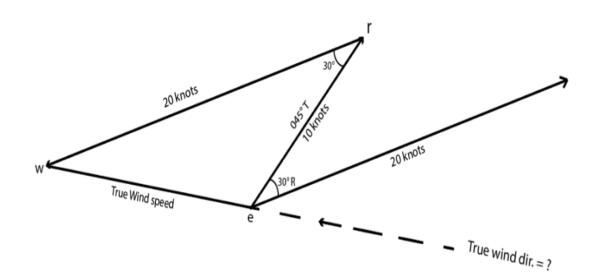


圖 8、船舶向量受到風向量影響航向及航速

表 1、實驗所用海洋儀器設備及器材				
儀器	用途說明			
發報器 transmitter	利用漁民常用的漁網定位器 (AIS),是一種使用 VHF 頻段的船舶自動識別系統,編碼協定為 NEMA0813,作為 GPS 發報器,固定於模擬海廢漂流物,發報器可自行對 MMSI 編碼,在船端可即時接收漂流物的軌跡,最長距離約可達 20 海浬。			
	【相關規格】 充電式 發射頻率 162.025MHz 發報器發報頻率每分鐘發報一筆。			
AIS 訊號接收盒 【廠牌型號】 Comar R400NG	作為軌跡追蹤之記錄器,自行開發 AIS解碼程式,每分鐘接收一筆資 料。簡易的 AIS 發報器,數據只 有經度及緯度,並以接收時間作為 軌跡發生的時間。	USIR MANUAL RECORD THE PROPERTY OF THE PROPER		
	【相關規格】 雙通道頻率:頻道 A 161.975 MHz 及頻道 B 162.025 MHz 靈敏度:<-112 dBM 數據協定:NMEA 0183 數據輸出調變速率:38,400 Baud			
海流儀 【廠牌型號】 ROWE Seawatch 600KHz	輸出格式:VDM output message 使用固定架安裝於船底,利用都卜勒原理量測現場海流的流速與流 向,擷取最近表層的 N、E向量海 流數據,在以 bottom tracking 所獲 獲得之船舶對地速度,修正量測到 的海流相對速度。			
	【相關規格】 寬頻:50m@2m bin size 窄頻:75m@2m bin size 最小空白距離:16cm 最小 Bin size:1.4cm 最大 Bins 數量:200bins 速率解析:0.01cm/s 長時間精準度:±0.25%,±2 mm/s			

寬頻單一 Ping 準確度: 3.5cm/s@2m bin size 窄頻單一 Ping 準確度: 20cm/s@2m bin size

速率範圍:±5m/s(defaul),±

20m/s(maximum) Ping 頻率:>10hz

風速儀

【廠牌型號】 Airmar 220WX

架設漁船頂(船頂約距水面 4m,本 氣象儀桿子長度 6m,約略為 10m 高,量測現場大氣之風速與風向, 透過內建的 GPS 及 AHRS 自動修 正為真風向與真風速。

【相關規格】 風向解析:0.1°

風向精準度:±3° at 10 m/s

風速解析: 0.1 m/s

風速精準度:5% at 10 m/s GPS 定位精準度:3 m 數據協定: NMEA 0183

採樣頻率:10Hz

圖 9、各類海廢漂流物

圖 10、浮球及 AIS 發報器

圖 11、浮球組佈放照片紀錄

圖 12、模型假人及模型假豬漂流物佈放照片紀錄

圖 13、所有漂流物佈放之空派照片紀錄

圖 14、漂流物固定漁網定位器的照片記錄

2.3 數據處理

實驗日期為11月14日,作業自8時2分(第0分鐘)至16時10分(約為第480分鐘),潮汐依氣象局資料自凌晨1時2分最低30公分,到7時6分達最高潮93公分後開始下降,至13時4分最低潮位(出現於第300分鐘),最低45公分然後反轉,第二次高潮為下午18時51分,最高108公分。11月15日作業自上午7時41分至下午15時25分,潮汐從最低凌晨1時53分最低20公分,開始漲潮至6時9分達最高、高度86公分,下午13時36分最低潮51公分,第二次高潮出現於黃昏19時25分,最高115公分。

本研究所收集的資料特性,包含海流、風速及漂流物各有所不同,本研究所使用的海流儀數據的頻率設定,約每3~4分鐘產出一筆,資料由海流儀的軟體進行區段時間的平均計算,本研究僅取最表層的海流資料使用,風速則每秒鐘產出1筆,風速使用船用真風速氣象儀,當船轉彎或移動時,資料需要刪除,並且進行2倍標準偏差外的資料濾除,漂流物的AIS浮標約每分鐘1筆,且經常掉資料,需要進行移動平均、內插等數值方法進行前處理。

本實驗所使用的 ADCP 海流儀 (品牌型號 ROWE 600KHz),使用固定架安裝於船底,利用都卜勒原理量測現場海流的流速與流向,海流儀為所量測到的資料為垂直剖面的流速、流向資料,是相對的數值,本計畫擷取最近表層的海流數據,由於架設於船底,取最上層量測到的海流,該量測到的海流速度為船與海流的相對速度,以垂直及水平的向量呈現,垂直為 N,即流向北的海流,水平為 E,即為流向東的海流,再扣除海流儀量測到的 bottom tracking,即船對海床的相對速度,該修正速度為海流對海床的絕對速度,同一時間收集。

11 月 14 日海流資料擷取自第一層資料,水深深度 0.87m,從海流速度時間序列圖,如圖 15,海流速度初始 0.7m/s 於第 120 分鐘後遞減至 0.1m/s 開始反增,於第 200 分鐘處漸增至 0.5m/s,從流向時間序列圖觀察,如圖 16,海流方向於第 120 分鐘前海流流向北方,之後轉向至 100 至 140 度,再從流速流向的玫瑰圖,如圖 17 顯示,海流呈現西北北(320 至 340 度)及東南流向(100 至 140 度),另外,從海流之 NE向量及合成流矢向量觀察,如圖 18,圖中綠色線條為 East 海流,代表水平方向的向量,藍色線為 North,代表垂直方向的海流向量,流矢線長短代表海流的強弱,流矢方向則代表合成海流流向,初始垂直向量為正,漸轉為負值,水平向量為負,漸轉為正值,合成向量為流向西北北(約 320 至 340 度),在第 120 分鐘順時針方向轉向東再向東南,大約就是上午 10 時左右,10 時後,合成向量為向東南(約 100 至 140 度)。

關於風速及風向部分,第一日(14 日)請參見風速的時間序列圖,如圖 19,風速約略介於3至9m/s區間,在第0至60分鐘約略4m/s,漸漸變強,於第120分鐘時約為6m/s,

200分鐘又再變更強,約略在第 240分時到達 8m/s,在第 280分鐘後轉弱至 6m/s 之後,持續介於 6~8m/s 間。再觀察風向之時間序列圖,如圖 20,風向主要為北風,由北邊吹向南邊,偶有陣風東及東南風,而風速風向玫瑰圖,如圖 21 顯示,主要風向為北風(340 度至 20 度),風速約 3 至 9m/s,偶有 50 至 185 度之陣風,風速約 6 至 12m/s。

關於風速向量計算,由美國國家大氣研究中心(National center for Atomospheric Research, NCAR)發展針對大氣科學研究常用語言 NCL (NCAR command Language)之風速向量計算公式,由風速 Wspeed (m/s)及風向 Wdir(°)計算獲得:

$$u = (-1) * Wspeed * \sin(\frac{\pi}{180} * Wdir)...$$
 (1)
 $v = (-1) * Wspeed * \cos(\frac{\pi}{180} * Wdir)...$ (2)

其中Wdir角度需要轉成弧度,u為水平分量,如公式(1),由 Wspeed 負值乘以角度的正弦函數、v為垂直分量則由 Wspeed 負值乘以角度的餘弦函數,如公式(2)。依上述公式將計算出風場 U、V向量圖,如圖 22,得知觀測期間,風速穩定呈現北風(由北向南吹)的狀態。關於風速繪圖部分,因為風速數據格式為 NEMA0183,取樣頻率為最高可達10Hz,本研究設定 1Hz,每秒一筆,每分鐘有 60 筆因此繪製向量圖時需要將資料進行移動平均計算,因此本計算採 60 筆移動平均,繪製向量圖時為避免過度擁擠,5 筆取一筆進行繪製。

所有海廢漂流物的軌跡分布圖顯示,請參見圖 23,圖中圓形點為佈放起始點,各類漂流物軌跡以西北東南走向呈帶狀分布,其中浮球組由 A 到 H 共計 8 顆浮球,浮球直徑 30 公分,浮力為 15 公斤分成四組,每組 2 顆具有相同配重,故將配重則分成三等份,故,分成三組再加上一組加掛尾繩,以降低風吹及增強受海流影響,第 一組配重 5 公斤最輕為 A、B 浮球,第二組配重約 10 公斤,C、D 浮球組,第三組 D、E 配重 14 公斤,第四組配重 10 公斤再加掛尾繩;尚有各類漂流物,如釣魚冰桶、漂流木、碰墊、保麗龍,以及兩具模型假人,一個立姿、一個躺姿,立姿模擬求生姿態,躺姿模擬大體,參見圖 6;佈放起始時間為 11 月 14 日 8 時 15 分左右,所有物品初始流向為向西北漂移,約在 10 時 15 分時(約為第 120 分鐘處)軌跡開反轉向東南方向漂移,而圖中假人模型(立姿)及浮球 G(帶尾)的軌跡平移,是實驗過程中為避免漂流物擱淺,將漂流物撈上船,移至南邊再投入海中繼續漂流,屬人為介入。

關於漂流物的數據是使用漁民常用之漁網定位發報器,經由 VHF 頻段將定位點的 GPS 發報出來的,傳送的數據格式為 NEMA0183,與 AIS 解碼相同,解出的欄位只有 MMSI、經度及緯度,每分鐘發報一筆,由於海上漂流物受海況影響,收訊數據常有遺漏,因為連續時間序列,對資料影響不大,為了與風場及海流流場比對,統一轉換成向量, 向量計算由經緯度移動距離及間隔時間差來計算,向量數值代表浮球的瞬時水平(U)及垂

直(V)向量,由A點到B點經緯度座標計算距離公式為球面三角通用計算方式,取自維基百科的半正矢定律(Haversine)公式,公式如下式(3)~(6)。

$$dx = (Lon_B - Lon_A) * \frac{pi}{180} \dots (3)$$

$$dy = (Lat_B - Lat_A) * \frac{pi}{180}$$
 (4)

$$H = sin^{2}\left(\frac{dy}{2}\right) + \cos\left(Lat_{A} * \frac{pi}{180}\right) * \cos\left(Lat_{B} * \frac{pi}{180}\right) sin^{2}\left(\frac{dx}{2}\right)....(5)$$

$$Distance = 2 * R * asin(\sqrt{H}) * 1000....(6)$$

其中經緯度需轉換為弧度,其中R為地球半徑,地球半徑=6371公里(3959海浬、3956英里),距離單位為公尺,除以時間獲得速率,再計算水平或垂直位移的正負值,依此可推算出向量值。

以下我們將各類漂流物與浮球組分開討論,比較容易理解受力關係,各類漂流物的圖 24,呈帶狀分散的軌跡由左向右依序為保麗龍、釣魚冰箱、假人(躺)、碰墊、漂流木、假人(立),這個偏移顯示保麗龍除了面積大之外,密度也輕,與相同浮出面積更容易受風的作用力影響而改變漂流軌跡,漂流木與假人(立)都一半吃水,且密度也大,故受作用力影響不大。而僅從浮球組的帶狀分散的軌跡圖,如圖 25 來看,兩兩一組的浮球組,具有相同配重之浮球軌跡相近,證明其所受的作用力是相同的。浮力較大的浮球A往西南偏移最多,浮球 C 浮力次之,偏移也次之,浮球 E 浮力第三,偏移也排第三,而浮球 G 因為帶尾,軌跡隨海流移動,偏移最小,浮球 G 尾段因人力介入,故軌跡向南平移。

綜上述數據顯示,配重越重露出水面體積越小,受風作用力影響也越小。漂流物初始受到海流向西北北流(約320至340度)影響,風力由北方吹向南方,受風影響大者漂流軌跡偏西,收海流影響大者,隨海流漂移;漂流物在第120分鐘後(也就是10時5分),海流之N向量遞減而 E向量遞增,海流由流向西北北逆轉流向東南方(100至140度),而風速的仍然向北且漸增至6m/s,將漂流物向南推移,露出水面面積越大者漂流物向南偏的位移越大,吃水深的直立假人與帶尾的浮球較不受風的影響。

從漂流物的向量圖及流矢圖觀察,如圖 26,所有浮球初始向量為向西北漂流,在第 85 分鐘就開始反轉指向東南漂流,與前述海流向量有約 35 分鐘的差距,顯然這時的北風影響了浮球的移動;而浮力不同的浮球組受到風的影響,也可從的流矢圖看出,浮球本身總浮力 15 公斤,浮球 A 為配重約 5 公斤的浮球,也就是露出水面最多的浮球,浮球 C 配重將近 14 公斤,幾乎全部沒入水中,浮球 E 為配重 10 公斤但是帶有尾繩的浮球,受到海流影響較多,初始期間浮球往西北漂移,如圖 26,在第 40 分鐘時,所有浮球都向西北

北漂移,浮球 A 浮力大偏差角度最大,而在第 120 分鐘,所有浮球都轉向東南漂移,同樣地,浮力最大的浮球 A , 也是向偏差角最大的。

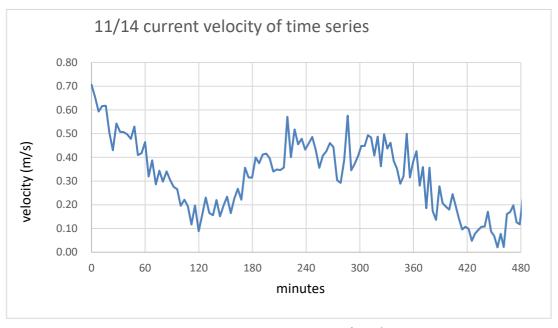


圖 15、11 月 14 日海流速度時間序列圖



圖 16、11 月 14 日海流方向時間序列圖

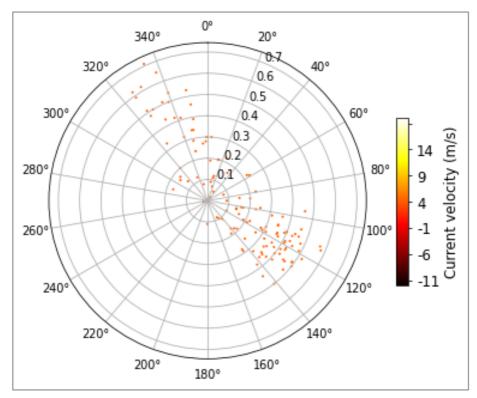


圖 17、11 月 14 日海流流速流向玫瑰圖

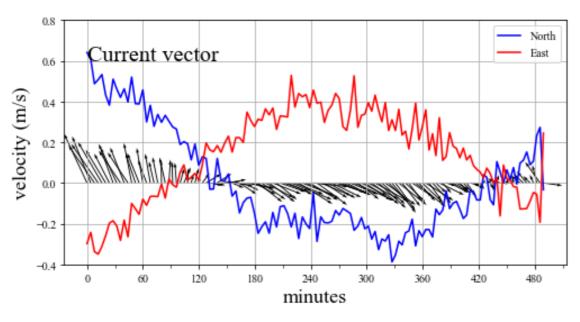


圖 18、11 月 14 日海流 N、E 向量及流矢圖

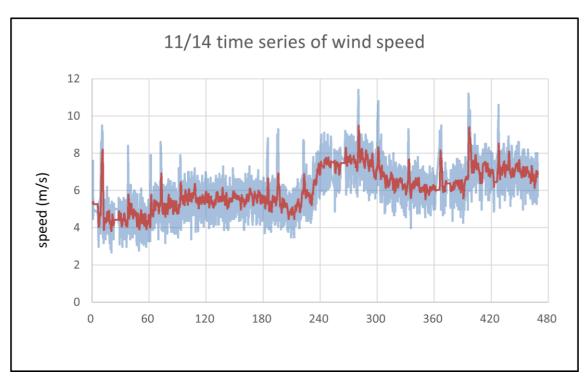


圖 19、11 月 14 日風速時間序列圖

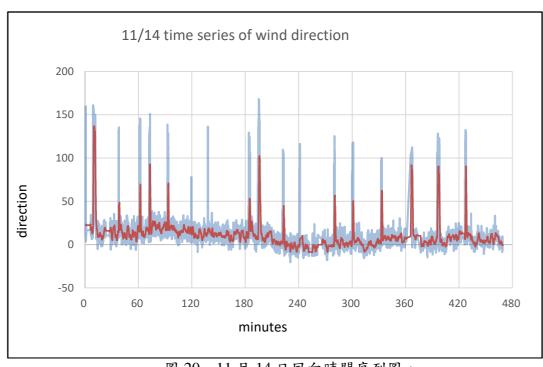


圖 20、11 月 14 日風向時間序列圖,

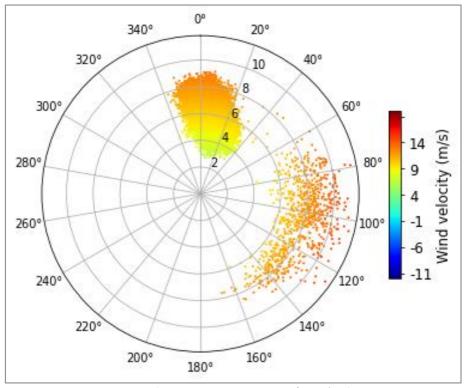


圖 21、11月 14日風速玫瑰圖

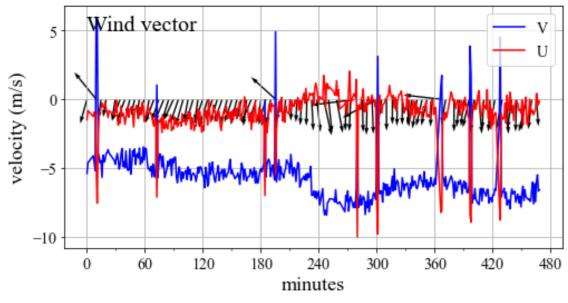


圖 22、11月 14日的風場之 U、V 向量及風矢圖

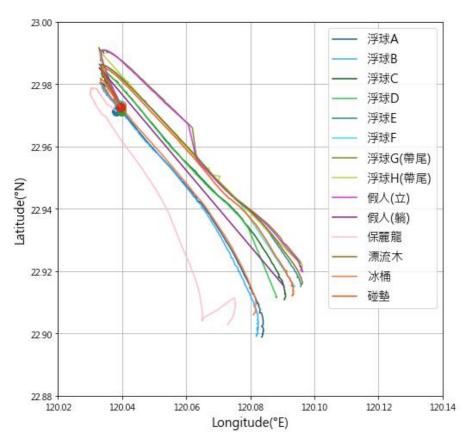


圖 23、11 月 14 日所有漂流物包含浮球組之軌跡分布圖

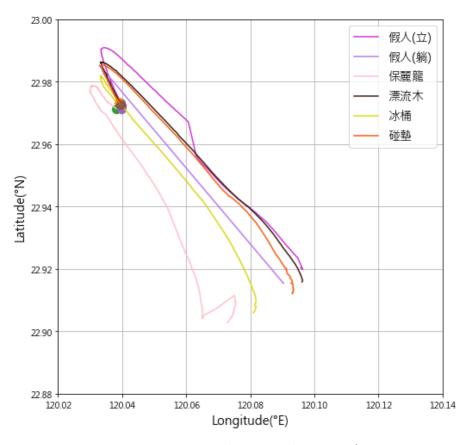


圖 24、各類漂流物的漂流軌跡分布圖

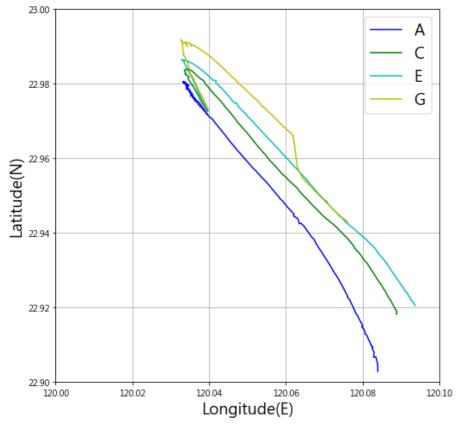


圖 25、浮球組的漂流軌跡分布圖

圖 26、浮球組的向量及流矢圖

2.4 球冠計算

根據阿基米德、畢氏定理,球冠(spherical cap),如圖 27,計算公式如式(7)~(9),本研究所用浮球半徑 15 cm,淨浮力為 15 kg,球體體積計算公式,如公式(7),此浮球的體積為 4500π cm³,因此,單位體積之浮力為 $1/300\pi$ (kg/cm³),故,配重 5kg 的浮球,如公式(8),可計算出浮球 A、B 水面高度約為 21.52 cm,在換算露出水面球冠表面積,如公式(9),約為 2027.18 cm³,浮球 C、D 配重 10 kg,露出水面的球冠高度 17.42cm,露出水面球冠表面積 1640.96 cm³,浮球 E、F 配重將近 14 kg,露出水面高度 11.2 cm,水面上的表面積為 1055.04 cm³。

	衣 1 · 行场组的	癿里兴场心向及	
分組	配重	露出水面高度	露出水面表面積
	(公斤)	(公分)	(平方公分)
浮球 A、B	5	21.52	2027.18
浮球 C、D	10	17.42	1640.96
浮球 E、F	14	11.2	1055.04
浮球半徑 15 公分,無	配重時浮力為 15 公斤		

表 1、浮球組的配重與球冠高度

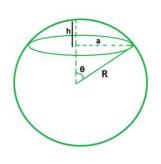


圖 27、球冠高度

$$\frac{4}{3}\pi r^3$$
.....(7)
$$\frac{(3r-h)}{3}h^2\pi$$
....(8)

$$2 \pi r h$$
....(9)

公式(7)為球體體積公式,公式(8)為球冠體積公式, 公式(9)為球冠表面積公式,h則為球冠高度。

2.5 風壓差計算

前一節僅用向量觀念處理數據,本節將引入風壓差觀念,依據美國海岸防衛隊在報告書(CG-D-09-00,1999)所定義的參數:

(1)相對風向(Relative Wind Direction, RWD):來自參考點的右側風為正,來自左側的風為 負。請參考圖 28,RWD 與風壓差角(La)之間的關係。(2)風壓差角(Leeway Angle, La):偏 航方向減去風吹的方向。順風右側的漂移為正,順風左側的漂移為負。這與相對風向的 約定相同。 0 度的則屬順風漂移。(3)風壓差速度(Leeway speed, |L|):向量強度大小。風壓 差速度始終為正。風壓差速度和風壓差角形成極坐標上的距離定位,此為風壓差向量。(4) 風壓差的順風(Downwind, DWL)及側風分量(Crosswind, CWL):風壓差分量以笛卡爾坐標 表示的風壓差向量(leeway volcity vector)與風速向量 (Wind velocity vector, W_{10}) 關係。這裡 分量可以是正,也可以是負。實際上,順風部分幾乎總是正的。側風分量是指搜救載具 與順風方向的偏離。正側風分量是風向右側的發散,負側風分量是風向左側的發散,在 低風速時,使用側風分量比使用風壓差角,容易表達 SAR 載具在順風方向上的發散,因 為側風分量乘以風速使發散變小,比風壓差角的容易計算。而低風速時側風分量的分散 減少。因此,可利用風壓差分量的回歸統計方法實現作業化數值搜索規劃工具[5]。(5)風 壓差係數(Leeway rate):風壓差速度 (|L|) 除以調整至 10 公尺高 (W_{10}) 的風速。考慮到 |L|的單位為 |L|0 的單位為 |L|0 所以,以風速的百分比(%)表示。

參考上述,本研究所蒐集到的數據分析,如圖 29,風、海流與漂流物三者的關係猶如圖 27 所描述,左圖為第 26 分鐘時(此時漂流物為順風右側飄移),相對風向及風壓差角為正值,圖右為第 194 分鐘時為負(此時為順風左側飄移)。通常可以觀察到物體迎風轉向趨勢,即從相對於風向(例如順風左側)的持續漂移方向改變為反向。需要識別這些符號變化來分割左右漂移事件,然後計算左右側風風壓差係數(r)。由於這種現象變化通常很少見,最簡單的方法是目視檢查相對於順風方向風壓的漸進向量圖 (Progressive Vector Diagram, PVD),如圖 30,再根據上述定義,而本次實驗所架設的風速儀約為 10 公尺高(吃水 1 公尺、水面至船橋頂 6 公尺、風速儀桿長 3 公尺),所測量數據符合本次求解風壓差使用。風壓差與風(W₁₀)的方向具線性關係, (Allen, A.1999)向量求夾角如下,公式(10)到(12):

$$\frac{|L|}{|W_{10}|} = r(\%)....(10)$$

$$DWL(L_d) = |L| \sin(90^\circ - La) \dots (11)$$

$$CWL(L_c) = |L| \cos(90^{\circ} - La)....(12)$$

其中, W_{10} 為 10 公尺高的風速(m/s)、L 是 Leeway 向量,|L|則是 Leeway speed,r為風壓差係數,單位為百分比(%),La是風壓差角,順風分量為風壓向量的餘角正弦,側風分量則風壓向量的餘角餘弦。

遵循 Allen (1996)定義和迴歸分析方法。使用風壓差速度的順風和側風分量對風速的兩個線性回歸模型。一個線性回歸模型對於零風速時的風壓差速度不受約束,如公式(13),而第二個線性回歸模型則通過原點受到約束,以便在零風速時風壓差速度被迫為零,亦即截距為零,如公式(14)。

$$|L| = a + b * W_{10}....(13)$$

$$|L| = b * W_{10}$$
.....(14)

將風壓差向量分解成順風分量(DWL)及側風分量(CWL)。又根據 Allen (2005) [4]研究中發現 10 米風速 W₁₀ (m/s) 與物體的風壓差之間幾乎呈線性關係,如圖 31 ,圖左零風速時風壓差速度不受約束,圖右則零風速時風壓差為零,截距為零。兩分量與風速呈幾乎線性關係,這方便我們透過分析順風和側風風壓差分量應用在蒙特卡羅搜救規劃中。

(Breivik et. al, 2011)接近徑向對稱漂移物體具有非常小的側風漂移,可能無法辨別風速和側風漂移之間的明確關係,而其他物體具有顯著的風壓差的側風分量導致向左或向右的漂移,即正負側風分量,透過實驗數據,於是再把公式(13)(14)以下列表示:

$$L_d = a_d W_{10} + b_d + \varepsilon_d \dots (10)$$

$$L_{c+} = a_{c+}W_{10} + b_{c+} + \varepsilon_{c+}.....(11)$$

$$L_{c-} = a_{c-}W_{10} + b_{c-} + \varepsilon_{c-}$$
 (12)

 L_d (cm/s)為順風分量等於風速常數 a_d (%)加上偏移量 b_d ,以及誤差項;而 L_d 可以對正 (L_{c+}) 、負 (L_{c-}) 側風分量(cm/s)進行線性回歸。假設線性回歸存在高斯誤差(Gaussian error),三個參數(ε_d 、 ε_{c+} 和 ε_{c-})足以解釋順風以及正負(或左右)側風分量的誤差。最後,可以 通過原點約束線性回歸係數(無低風偏移,b=0)。如果數據量允許,兩組係數都應使用 其相關的標準誤差進行計算。

而本研究之漂流物軌跡向量 $B = (u_B, v_B) = L$,如公式(13),因此,漂流物向量 B 與海流 $C = (E, N) = (u_C, v_C)$ 及風 $W = (U, V) = (u_W, v_W)$,風與漂流物的夾角即為 La,依據向量夾角等於兩向量點積除以兩向量長度的反餘弦函數,公式如下(13)~(16):

$$B = (u_B, v_B)$$
(13)

$$\cos(\text{La}) = \frac{B \cdot W}{|B||W|}.$$
(14)

$$La = \cos^{-1}\left(\frac{B \cdot W}{|B||W|}\right) \dots (15)$$

$$La = cos^{-1} \left(\frac{u_B u_W + v_B v_W}{\sqrt{u_B^2 + v_B^2} \cdot \sqrt{u_W^2 + v_W^2}} \right) \dots (16)$$

依上述公式,將 2.4 節海流、風以及漂流物的向量,計算出風壓角(La),再推算出順風分量 (L_d) 及側風分量 (L_c) 。

進行內插資料處理,內插每分鐘 1 筆,以便同步比對三種垂直與水平向量,海流、風、浮球 A、風壓係數(k)、風壓差(L)及風壓差角(La)之關係,依據公式(13)~(16)由海流與漂流物合成向量推算風壓差角(La),再利用線性回歸,如圖 32,本實驗的 R-squared 分數只有0.01,推測可能與本次實驗風速分布有關,本次實驗風速最小約3.8m/s到最大8m/s,風速變化小,所以集中在此區間,透過線性回歸,求得DWL的斜率,由此求得風壓差(L)及風壓差係數(r)。也可以此預測漂流廢棄物漂移的方向及速度。

再對浮球組個別向量分析探討,在同一時間因為露出水面不同,各浮球所受到的風壓差也不同,如圖 33 左側,再第 40 分鐘時,風的方向約為北風、海流方向為西北北,合成向量為向西北北,漂流物向西北北,此時為,漂流物為背風方向移動,假設浮球 G 因帶有尾繩,且配重約 11 公斤,受到海流影響最大,受到風作用力影響最小,因此浮球 A 因配重較輕,露出海面最多,所受到的 LF 也最大,浮球 C 次之,浮球 E 受到的 LF 再次於 C,LF 的作用力為;圖右側為第 120 分鐘左右,風向仍然為北風,海流為流向東南,合成向量為東南,浮球組已轉向東南漂移,此時,漂流物為順著風的方向移動,浮球 A 所受的 LF 也最大,因此 LF 也可再分解為風作用力在不同表面積所致,露出海面的面積大小會產生不同風壓,也驗證了不同風壓致使漂流軌跡產生分歧的現象。

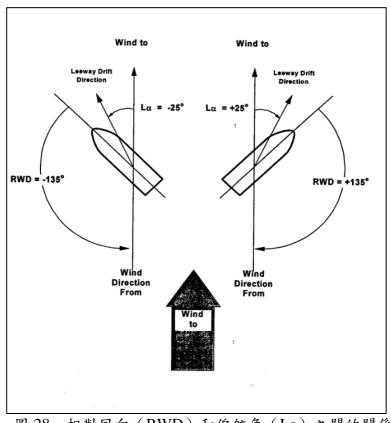


圖 28、相對風向 (RWD) 和偏航角 (La) 之間的關係。

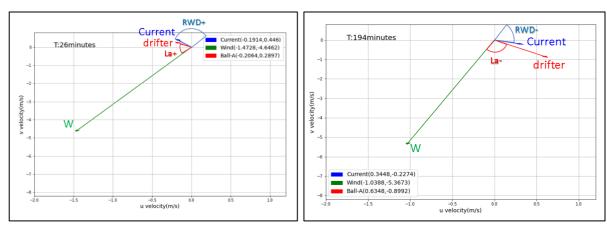


圖 29、左圖相對風順風右側的漂移為正,右圖順風左側的漂移為負

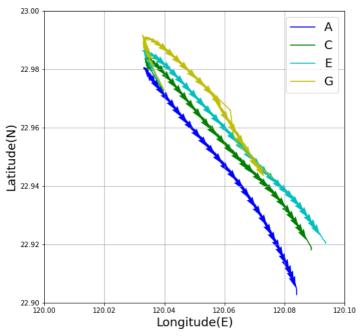


圖 30、漸進向量圖(PVD)

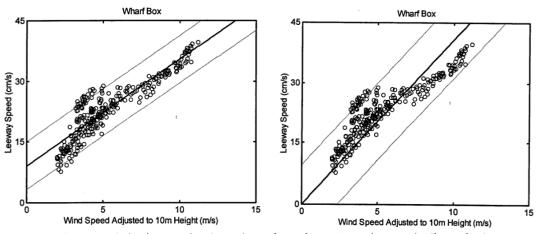


圖 31、圖左線性回歸零風速不受約束,圖右線性回歸截距為零

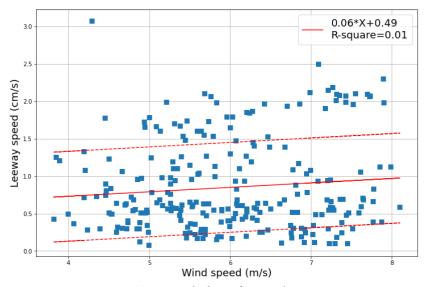


圖 32、浮球的線性回歸

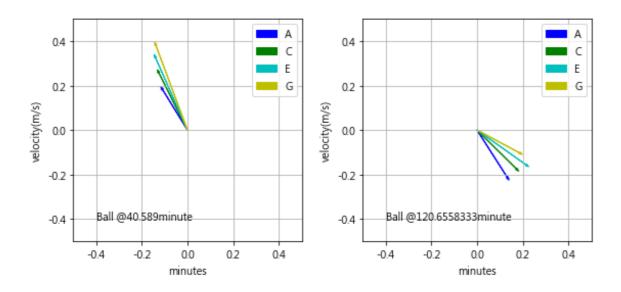


圖 33、浮球組受到大小不同的風壓情形

第三章重要發現

本研究將海流、風場、漂流物實驗數據,透過漂流物的向量得知風壓差角度(La),再透過向量分解及線性回歸等方法,獲得風壓差(L)關係,解出順風與側風分量。本實驗中的比較了保麗龍及碰墊,兩者露出海面體積均較大,但保麗龍因密度較輕,更容易受到風力的作用改變軌跡,而且隨時間約長,軌跡歧異度越來越大;另外,以躺姿的假人與立姿的假人為例,由於立姿肩膀以下沒入水中受海流影響面積較大,與帶尾浮球所受風壓差影響相近,而躺姿露出水面面積相對較大,所受的風壓差影響較大,且與漂流木所受風壓差相近;或許未來搜救可以施放及跟隨漂流木軌跡,比施放浮球來得接近待搜救的人,而且漂流木的形狀為非對稱性,更像人在漂流的形體,這可以做更多的試驗來證明。

另外,本實驗使用不同配重之浮球,由於可由阿基米德、畢氏定理及球冠計算公式,因為壓力乘以面積得到受力,故可進一步將風壓轉為作用力,這可解釋不同配重的浮球受到不同作用力,造成偏移量的不同。而非對稱的漂流物體,風壓差角會產生順風正漂移及左側的漂移現象較明顯,若是球體則較不明顯,本實驗中同樣配重的浮球兩顆一組,看不出有正負偏移的現象,有可能實驗風速分布較為集中所產生的現象,以過去經驗釋放一組浮球進行雷達驗證時,往往會有發散的漂移軌跡的現象,但是否因為水下有加掛拖曳傘,對受力產生影響所致,所以並非完全對稱,這現象可以另外找機會進行實驗驗證。

第四章 主要建議事項

實驗作業心得方面,本次實驗的海況良好,所以風速的變化不大,所收集到的風速集中 3.8~8 m/s 之間,所以仍需持續進行實驗,以收集更多不同風速狀況下的漂流軌跡,並且結合 AIS 發報器的浮標,很適合指揮船家進行佈放及回收,可隨時再海圖儀獲知漂流物的位置,比起單純使用 GPS 方便作業,只是 AIS 發報器是魚網定位專用的信標,其發報頻率每分鐘一筆,定位飄移嚴重,軌跡數據品質不佳,需要經過前處理,花費許多時間,故未來進行實驗,建議加掛 GPS logger,以提高數據品質,且容易回收。

實驗作業過程確實辛苦,尤其回收假人、假豬時,需要兩個人力進行拖拉,實驗前需要固定發報器,測試各樣儀器,又要確保實驗數據品質,各樣儀器的現場操作,需要至少兩人,加上佈放回收工作共計需要四人,並且實驗期程很難跨越整日兩個潮汐周期,而且被要求需要當日進出港,因為租用娛樂漁船出海作業,就會被限定進港時間,因此凌晨3~4點就在港邊準備出港,一直到黃昏前趁天黑前將漂流物回收,再趕回港的過程實在很匆忙,實驗過程一日大約只有8小時,大約480分鐘,無發收集更長的漂流軌跡,未來本院若有研究船,進行相關實驗將可收集更長時間的漂流軌跡。

致謝

本研究期間感謝長官的全力支持,廖主任、賴博實驗規劃的指導,從立案規劃實驗 過程到海上作業的紀錄,辛苦點滴只有在現場的人才知道;並感謝曾經受委託之公司包 含傳家樹的邱靜玉小姐,認真不懈協助跑腿、塑新企業的程建雄先生,還協助調借設備, 以及澄洋環境顧問股份有限公司,從海上海漂流,到岸際廢棄物的關聯發展;海上操作 儀器這部分仍是需要專業人力來操作,過程中仍能從中學習到不少知識技能,期望能持 續進行海上實驗數據的收集。

參考文獻

- 1. Review of Leeway: Field Experiments and Implementation (1999). U.S. Coast Guard Research and Development Center, Report No. CG-D-08-99.
- 2. A. Allen (1996). The Leeway of Cuban Refugee Rafts and a commercial fishing vessel (2021). U.S. Coast Guard Research and Development Center, Report No. CG-D-2I-96.
- 3. Allen, A., (2005). "Leeway Divergence Report." Report CGD-05-05. US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA.
- 4. Ø. Breivik, A. A. Allen, C. Maisondieu, and J. C. Roth, "Wind-induced drift of objects at sea: The leeway field method," Applied Ocean Research, vol. 33, no. 2, pp. 100–109, Apr. 2011, doi: 10.1016/j.apor.2011.01.005.
- 5. Ø. Breivik and A. A. Allen, "An operational search and rescue model for the Norwegian Sea and the North Sea," Journal of Marine Systems, vol. 69, no. 1–2, pp. 99–113, Jan. 2008, doi: 10.1016/j.jmarsys.2007.02.010.
- C. Maisondieu, O. Breivik, J.-C. Roth, A. A. Allen, B. Forest, and M. Pavec, "Methods for Improvement of Drift Forecast Models," in 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 4, Shanghai, China: ASMEDC, Jan. 2010, pp. 127–133. doi: 10.1115/OMAE2010-20219.
- 7. J. T. Morris, V. I. Osychny, and A. C. Turner, "Analytical techniques for the calculation of leeway as a basis for search and rescue planning," in OCEANS 2008, Quebec City, QC, Canada: IEEE, 2008, pp. 1–10. doi: 10.1109/OCEANS.2008.5152022.
- 8. K. Zhu, L. Mu, and H. Tu, "Exploration of the wind-induced drift characteristics of typical Chinese offshore fishing vessels," Applied Ocean Research, vol. 92, p. 101916, Nov. 2019, doi: 10.1016/j.apor.2019.101916.
- 9. G. Sutherland et al., "Evaluating the Leeway Coefficient of Ocean Drifters Using Operational Marine Environmental Prediction Systems," Journal of Atmospheric and Oceanic Technology, vol. 37, no. 11, pp. 1943–1954, Nov. 2020, doi: 10.1175/JTECH-D-20-0013.1.
- 10. P. L. Richardson, "Drifting in the wind: leeway error in shipdrift data," Deep Sea Research Part I: Oceanographic Research Papers, vol. 44, no. 11, pp. 1877–1903, Nov. 1997, doi: 10.1016/S0967-0637(97)00059-9.

附錄一、ADCP 數據

Hour	Minute	Depth	N	E		Hour	Minute	Depth	N	E	Hour	Minute	Depth	N	E
8	23	0.873858	0.245978	0.025336		11	7	0.874104	0.218259	-0.10162	13		0.874057	0.416538	-0.12353
8	27	0.873829	-0.92993	0.486312		11	11	0.874	0.198869	-0.12135	13	48	0.874048	0.353568	-0.00926
8	31	0.873753	0.228823	0.123235		11	15	0.874057	0.278374	-0.00185	13	52	0.874188	0.139805	0.603654
8	35	0.873695	0.268939	-0.04235		11	19	0.874057	0.240163	-0.16804	13	56	0.874104	0.194969	-0.01233
8	39	0.873801	0.286921	-0.05055		11	23	0.874066	-0.18949	0.839873	13	59	0.873943	0.312179	-0.13958
8	43	0.873695	0.2984	-0.04196		11	26	0.873972	0.239997	-0.13146	14	3	0.873962	0.238806	-0.10406
8	47	0.873791	0.246084	-0.11936		11	30	0.874085	0.089693	0.21513	14	6	0.874113	0.238521	-0.00532
8	51	0.873791	0.337032	0.020521		11	34	0.874047	-0.39596	0.518011	14	10	0.874113	0.314147	-0.12212
8	55	0.873829	0.121509	0.378076		11	38	0.874076	0.307277	-0.12413	14	14	0.874467	0.237432	-0.15194
8	59	0.873981	0.340771	-0.05792		11	42	0.874066	0.26493	0.035626	14	17	0.873972	0.324563	-0.17982
9	3	0.874	0.309337	-0.03104		11	46	0.874104	0.273434	-0.04088	14	21	0.874189	0.132101	0.216106
9	7	0.874019	0.195939	-0.11946		11	50	0.874066	0.216612	-0.08678	14	25	0.874216	-0.28433	1.343381
9	11	0.874066	0.266971	-0.04626		11	54	0.874085	0.3616	-0.07768	14	28	0.874	0.367451	-0.05137
9	15	0.873943	0.233787	-0.0767		11	58	0.874076	0.059786	0.331374	14	32	0.874113	0.314515	-0.01756
9	19	0.874085	0.115936	0.498988		12	2	0.874094	0.127429	0.327105	14	36	0.874189	0.31132	-0.09955
9	23	0.874057	0.245553	-0.05376		12	6	0.873972	0.415712	-0.04448	14	40	0.874412	0.320276	-0.08885
9	27	0.874113	0.368518	-0.0419		12	10	0.874104	0.157833	-0.18864	14	43	0.874	0.273839	-0.13093
9	31	0.873991	0.079331	0.757905		12	14	0.874095	0.379101	-0.11082	14		0.873981	0.192765	-0.08566
9	35		0.265461	-0.01663		12		0.874057	-0.2103	0.311789	14	50		0.254435	-0.16469
9	39		0.333584	-0.08136		12	22			-0.01739	14	54	0.874095	-0.15502	
9	43	0.874057	0.293346	0.011922		12		0.874113		-0.17566	14	58	0.873972	0.392468	-0.09488
9	47	0.874038	0.22643	0.017279		12		0.874085		-0.09815	15		0.874328	0.316237	-0.21102
9	51		0.11111	0.53706		12	34	0.874	0.361955	-0.1327	15		0.874132	0.286031	-0.19482
9			0.261938	-0.02748		12	38		0.418465	-0.23777	15	-	0.874019	0.400632	-0.15333
9	59		0.377542	-0.02239		12	42		0.186177	0.512573	15		0.874019	0.381142	-0.06828
10	3	0.874057	0.314542	-0.16033		12		0.874066		-0.04697	15		0.873981	0.276684	-0.10879
10	7	0.874029	0.406952	-0.07714		12		0.874094	0.296708	-0.02802	15		0.874188	0.194429	-0.19738
10	11	0.874095	0.329729	0.025429		12	54		0.314854	-0.17645	15		0.874057	0.393794	0.046324
10	15		0.209355	0.029616		12	58		0.09324	0.660741	15		0.874188	-0.04038	0.311952
10	19	0.87402	0.157964	0.178207		13		0.874094	0.410224	-0.0983	15		0.874114	0.270178	-0.07497
10	23		0.45169	-0.08227		13			0.382774	-0.08545	15		0.874113	0.325303	-0.16691
10	27	0.874048	0.362652	-0.13704		13	9		0.380981	-0.13226	15		0.874282	0.307399	-0.17199
10	31	0.873991	0.32016	-0.06125		13			0.362075	-0.0548	15		0.874057	0.336331	-0.15252
10	35	0.874038	0.297023	0.197745		13	16		0.241169	-0.05465	15		0.874161	0.24402	-0.20209
10	39		0.32355	-0.10664		13	20		-0.2924	0.586696	15		0.873952	0.377737	-0.23948
10	43	0.874076	0.276676	-0.10265		13	23		0.329244	-0.09618	15		0.874104	0.345634	-0.19368
10	47	0.874076	0.226565	-0.16615	_	13			0.367626	-0.1305	15		0.874254	0.36035	-0.20365
10	51	0.874095	0.318443	-0.1363	_	13			0.167875	-0.19225	15		0.873981	0.279509	-0.19838
10	55		0.32484	-0.0053		13	34		0.250046	-0.23813	16		0.874066	0.269851	-0.16975
10	59	0.874029	0.334182	-0.02022	\dashv	13	38		0.272438	-0.0629	16		0.873981	0.408696	-0.16658
11	3	0.874076	0.342916	-0.14813		13	41	0.87418	0.245185	-0.15056	16	9	0.873953	-0.9941	1.639923

附錄二、風速數據(已處理)

附	鈞	ξ-	_	`	J	虱	这	₹.	數	才	豦	(i	_	處	. 3	里)																													
>	-6.5722	-6.6078	-6.6435	-6.6792	-6.7149	-6.7506	-6.7863	-6.8219	-6.8576	-6.8933	-	٠.	-	_	6.9806		-6.9348	-6.9579	-6.9811	-7.0043	-6.9627	-6.8906	-	-6.7348	-6.6274	-6.52	-6.4126	-6.3052	-6.1978	-6.0904	-5.983															
Þ	-0.5392	-0.5604	-0.5816	-0.6029	-0.6241	-0.6453	-0.6665	-0.6877	-0.709	-0.7302	-0.7514	-0.7726	-0.7938	-0.8384	-0.9064	-0.9744	-1.0397	-1.0783	-1.1168	-1.1554	-1.1917	-1.2271	-1.2624	-1.3123	-1.3918	-1.4713	-1.5508	-1.6303	-1.7098	-1.7893	-1.8688															
Minnte	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427															
Δ	-5.9689	-5.9442	-5.9195	-5.8948	-5.8701	-5.8454	-5.711	-5.3149	4.9687	4.8657		4.881	Ι.	-	4.8729		-4.8988	4.9755	-5.0586	-5.1417	-5.2248	-5.3079	-5.391	-5.4741	-5.5572	-5.6403	-5.7234	-5.8065	-5.8896	-5.9727	-6.0558	-6.1389	-6.222	-6.3051	-6.2934	-6.2756	-6.2579	-6.2682	-6.2867	-6.3224	-6.3581	-6.3937	-6.4294	-6.4651	-6.5008	-0.518 -6.5365
B	-0.8732	-0.8861	-0.8991	-0.912	-0.925	-0.9379	-1.0766	-1.5425	-1.9059	-2.0414	-2.0382	-2.0285	-2.0883	-2.1012	-2.1469	-2.2043	-2.2236	-2.1173	-2.0029	-1.8885	-1,7741	-1.6597	-1.5453	-1.4309	-1.3165	-1.2021	-1.0877	-0.9733	-0.8589	-0.7445	-0.6301	-0.5157	-0.4013	-0.2869	-0.3057	-0.3331	-0.3605	-0.366	-0.3694	-0.3907	-0.4119	-0.4331	-0.4543	-0.4755	-0.4968	-0.518
Minnte	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	386
>	-6.619	-6.6026	-6.5862	-6.5698	-6.5534	-6.537	-6.4975	-6.4575	-6.3891	-6.3697	4.3626	-6.3555	-6.3484	-6.3412	-6.3341	-6.327	-6.3198	-6.3127	-6.3056	-6.2985	-6.2913	-6.2842	-6.2771	-6.2699	-6.2628	-6.2557	-6.2486	-6.2414	-6.2343	-6.2272	-6.2201	-6.2129	-6.2058	-6.1987	-6.1915	-6.1801	-6.1664	-6.1526	-6.1388	-6.1251	-6.1113	-6.0923	-6.0676	-6.0429	-6.0182	-5.9935
Þ	-0.0878	-0.0787	-0.0695	-0.0603	-0.0511	-0.0419	0.05872	0.14842	0.17896	+	-	+	0.03896	-	-0.0379	-	-0.1148		-0.1917	-0.2302	-0.2686	-0.3071	-0.3455	-0.3839	-0.4224	-0.4608	-0.4993	-0.5377	-0.5762	-0.6146	-0.6531	-0.6915	-0.73	-0.7684	-0.8069	-0.8184	-0.8155	-0.8125	-0.8096	-0.8067	-0.8037	-0.8084		-	-0.8473	-0.8602 -5.9935
Minnte	-	П	307		300	310	311 (312 (313 (t	t			319				323		325					330	331		333	334			337	Н	339	340	341	342	343	344	345	346	П	П	\dashv	350
>	-7.3654	-7.3791	-7.3928	-7.4088	-7.467	-7.5047	-7.5111	-7.515	-7.5495	-7.5782	-7.6069	-7.6283	-7.6301	-7.6038	-7.5316	-7.4138	-7.111	-7.0946	-7.0782	-7.0618	-7.0454	-7.029	-7.0126	-6.9962	-6.9798	-6.9634	-6.947	-6.9306	-6.9142	-6.8978	-6.8814	-6.865	-6.8486	-6.8322	-6.8158	-6.7994	-6.783	-6.7666	-6.7502	-6.7338	-6.7174	-6.701	-6.6846	-6.6682	-6.6518	-6.6354
D	0.22174	0.158	0.09425	0.02904	0.03367	0.04984	0.09313	0.13186	0.08927	0.06974	0.0502	0.03979	0.05407	0.08182	0.15195	0.01009	-0.3635	-0.3543	-0.3451	-0.3359	-0.3268	-0.3176	-0.3084	-0.2992	-0.29	-0.2808	-0.2716	-0.2624	-0.2532	-0.2441	-0.2349	-0.2257	-0.2165	-0.2073	-0.1981	-0.1889	-0.1797	-0.1705	-0.1614	-0.1522	-0.143	-0.1338	-0.1246	-0.1154	-0.1062	-0.097
Minnte	259	260	261	262	263	264	265	366	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304
>	4.9651	-5.01	-5.0548	-5.1303	-5.2289	-5.0966	-5.1294	-5.1852	-5.2409	-5.2966	-5.3719	-5.4484	-5.525	-5.6015	5.678	-5.7545	-5.8311	-5.9076	-5.9841	-6.0607	-6.1801	-6.3009	-6.4217	-6.5425	-6.6633	-6.7841	-6.9049	-7.0257	-7.1353	-7.2258	-7.2784	-7.3099	-7.3071	-7.343	-7.3655	-7.3891	-7.4127	-7.4226	-7.4082	-7.3901	-7.3551	-7.3249	-7.3106	-7.3243	-7.338	7.3517
Þ	-0.3747	-0.2982	-0.2218	-0.2274	-0.2004	-0.4933	-0.5005	-0.4688	-0.4372	-	+	-	_	-	-0.0992		0.02413		0.14743	0.20908	0.21661	0.22247	0.22834	0.2342	0.24006	0.24593	0.25179	0.25765		0.31074	0.29507	0.22712	0.22978		0.35157	0.38404	0.41651	0.44863	0.48054	0.48414	0.45915	0.45552	0.47671	-	0.34922	0.28548 -7.3517
Minnte	213	214	215		217	218	219	220		T	t	t	T	226		228		Т	231		Г	234	235		237 (238 C	239 (241	242 C	243	244 (246 C	247	248 C	249 (250 (251 (0	Г	П	254 (П		258 (
^	-4.7653	4.7436	4.7219	-4.7002	-4.6786	4.6569	4.6352	4.6135	4.5919	4.5702	4.5485	4.5268	4,5052	-4.4835	4.4618	-4.4401	4.4185	-4.3968	4.3751	4.3534	4.3318	4.3101	4.2884	4.2667	-4.2451	4.2234	-4.2081	4.2093	4.2073	4.1921	4.1764	4.1566	4.1404	-4.4706	-4.8008	4.884	4.9458	4.9851	4.9769	4.9688	-4.9606	4.9524	4.9442	4.936	4.9278	4.9202
Þ	-1.3809	-	-1.3888	-1.3927	-1.3966	-1.4005	-1.4044	-1.4083	-1.4123	+	+	+	+	-	-1,4357	_	-1.4436	_	-1.4514	-1.4553	-1.4592	-1.4631	-1.467	-1.471	-1.4749	-1.4788	-1.4673	-1.4164	-1.3676	-1.3278	-1.2923	-	-1.297	-1.1586	-1.0201	-0.919	-0.8211	-0.7429	-0.7065	-0.67	-0.6336	-0.5972	-0.5608	-	_	-0.4511
Minnte	167	168	169	170	171	172	173	174		T	t	T	179		181	T	183		185	186		188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	П	П		212
>	-5.1467	-5.1673	-5.1879	-5.2086	-5.2292	-5.2498	-5.2704	-5.2911	-5.3117	-5.3323	-5.353	-5.3736	-5.3942	-5.4149	-5,4355	-5.4469	-5.4236	-5.4003	-5.377	-5.3537	-5.3304	-5.3071	-5.2855	-5.2638	-5.2421	-5.2204	-5.1988	-5.1771	-5.1554	-5.1337	-5.1121	-5.0904	-5.0687	-5.047	-5.0254	-5.0037	4.982	4.9603	4.9387	4.917	-4.8953	-4.8736	4.852	-4.8303	4.8086	4.7869
Þ	-1.4698	-1.4531	-1.4363	-1.4195	-1.4028	-1.386	-1.3692	-1.3524	-1.3357	-	-	+	-	-		-	-1.2338	_	-1.2536	-1.2635	-1.2734	-1.2831	-1.287	-1.2909	-1.2949	-1.2988	-1.3027	-1.3066	-1.3105	-1.3144	-1.3183	-1.3222	-1.3262	-1.3301	-1.334	-1.3379	-1.3418	-1.3457	-1.3496	-1.3536	-1.3575	-1.3614	\vdash	\rightarrow	-1.3731	-1.377 -4.7869
Minnte	121	122		П	125	126	127	128		T	T	t					137		139	140	141	142	143		145	146	147		149	150	151	П			155	156	157	158	159	160	161	162			\neg	166
>	4.2675	-4.2593	-4.2511	4.2596	-4.2802	4.3009	4.3215	4.3421	4.3627	-4.3834	4.404	-4.4246	4.4453	4.4659	4.4865	4.5071	4.5278	4.5484	4.569	4.5897	4.6103	4.6309	4.6516	4.6722	4.6928	4.7134	4.7341	4.7547	4.7753	4.796	-4.8166	-4.8372	-4.8579	-4.8785	-4.8991	4.9197	4.9404	4.961	4.9816	-5.0023	-5.0229	-5.0435	-5.0641	-5.0848	-5.1054	-5.126
Þ	-2.1028		-2.1836		-2.1741	-2.1574	-2.1406	-2.1238	-2.1071	-	+	+	+		-2.0064	-	-1.9729	-1.9561	-1.9394	-1.9226	-1.9058	-1.8891	-1.8723	-1.8555	-1.8387	-1.822	-1.8052	-1.7884	-1,7717	-1.7549	-1.7381			-1.6878	-1.6711	-1.6543	-1.6375	-1.6208	-1.604	-1.5872	-1.5704	-1.5537			-1.5034	-1.4866 -5.126
Minnte	75	- 76		П	- 62	08	- 18			T	T	T		Г		T		Г	- 66	94	26	96	Г			100	101		103	104	105	106		108	109	110	111	112	113	114	115	116	117	Н	\neg	120
>	-4.2981	-4.2981	-4.2981	4.2981	4.2981	4.2981	4.2981	4.2981	4.2982	-4.2982	4.2982	-4.2982	-4.2982	-4.2982	4.2982	4.2982	4.2982	-4.2982	4.2982	4.2982	4.2982	4.2982	4.2982	-4.2982	4.2982	4.2982	-4.2982	4.2983	-4.2983	4.2983	-4.2983	-4.2983	-4.2983	-4.2983	-4.2983	4.2983	-4.2983	4.2983	-4.2983	-4.2983	4.2983	-4.2983	-4.2983	-4.2922	4.284	4.2757
Þ	-1.1599	-1.1786	-1.1973	-1.2161	-1.2348	-1.2535	-1.2722	-1.291	-1.3097	_		_	-	-	-1.4221		-1.4595	_	-1.497	-1.5157	-1.5344	-1.5532	-1.5719	-1.5906	-1.6093	-1.6281	-1,6468	-1,6655	-1.6842	-1.703	-1.7217	-1.7404	-1.7592	-1.7779	-1.7966	-1.8153	-1.8341	-1.8528	-1.8715	-1.8902	-1.909	-1.9277		-	-2.0219	-2.0623 -4.2757
Minnte	29	30	31	32	33	34	35	%	37	38	20	8	41	42	43	44	45	46	47	48	49	S	Ŋ	22	53	24	55	95	2.1	58	59	99	61	29	63	94	9	99	29	99	69	70	7.1	72	73	74

附錄三、浮球 A 數據(1/3)

		•					•	,						`		_																															
Lat	22.972657	22.972657	22.972657	22.97218	22.971865	22.971865	22.971865	22.97133	22.9711	22.9711	22.9711	22.970418	22.970418	22.970418	22.969745	22.969538	22.968718	22.968718	22.968718	22.968048	22.96783	22.96783	22.96712	22.966922	22.966922	22.966173	22.965933	22.965933	22.965208	22.964963	22.964963	22.964963	22.964247	22.964008	22.964008	22.964008	22.963262	22.963003	22.963003	22.963003	22.962288	22.962055	22.962055	22.962055	22.961343	22.9611	22.9611
Lo1	120.03887	120.03887	120.03887	120.039258	120.039408	120.039408	120.039408	120.039865	120.039992	120.039992	120.039992	120.040878	120.040878	120.040878	120.041347	120.041483	120.042148	120.042148	120.042148	120.04268	120.04285	120.04285	120.043385	120.043563	120.043563	120.044173	120.044362	120.044362	120.044878	120.04505	120.04505	120.04505	120.045633	120.045788	120.045788	120.045788	120.046405	120.04663	120.04663	120.04663	120.047162	120.047373	120.047373	120.047373	120.048005	120.048217	120.048217
Sec	Ξ	11	Ξ	=	Ξ	11	11	11	Ξ	11	Ξ	Ξ	11	12	12	12	12	12	12	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Min	2	22	53	ž	X	56	57	28	SS	0		m	4	vı	S	တ	11	12	13	75	16	17	18	19	21	22	23	22	56	27	28	29	8	31	32	33	쫐	33	36	37	33	33	8	41	42	43	5
	9	10	2	2	2	10	10	10	9	::	Ξ	Ξ	11	11	11	11	11	11	Ξ	Ξ	Ξ	=	11	11	11	11	Ξ	11	11	11	Ξ	11	11	Ξ	11	::	Ξ	=======================================	11	11	=	Ξ	11	Ξ	::	Ξ	11
code	Bl	B1	E	B1	E E	B1	B1	B1	E	EJ	E	E	Bl	Bl	B1	B1	<u>B</u>	B1	E	EJ	E	E	Bl	Bl	B1	Bl	E	B1	BI	B1	BI	띮	EJ	B	Bl	E	E	B1	BI	B1	BI	E	B1	E	EI	E	B1
	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008
																				_																											
				95 22.979627	• •	18 22.97951	33 22.979168	33 22.979168	38 22.979013					73 22.978467		73 22.978467	47 22.978188	45 22.978	45 22.978	95 22.977687	12 22.97755	12 22.97755	12 22.97755	73 22.977108	43 22.977015	43 22.977015	13 22.976562	05 22.976435	05 22.976435	05 22.976435	3 22.976005				-			32 22.974995	55 22.97446	23 22.974337	23 22.974337	23 22.974337	52 22.973775	33 22.973485	33 22.973485		4 22.972992
Lon	120.034075	120.033917	120.033895	120.033895	120.033895	120.034118	120.034433	120.034433	120.034338	120.0345	120.0345	120.0345	120.034422	120.034673	120.034673	120.034673	120.034847	120.035145	120.035145	120.035195	120.035312	120.035312	120.035312	120.035673	120.035643	120.035643	120.035913	120.035905	120.035905	120.035905	120.0363	120.036395	120.036395	120.036395	120.036837	120.037332	120.037332	120.037332	120.037655	120.037823	120.037823	120.037823	120.038162	120.038333	120.038333	120.038333	120.03874
SS	တ	œ	ဆ	ထ	O,	0,	o,	0	0	0	0,	0	0	o,	0	0	o,	0	0,	0	0,	o,	9	19	10	9	9	10	10	2	10	9	2	2	9	음	2	10	10	10	13	Ξ	11	Ξ	Ξ	11	11
Mii	0	7	2	Þ	v	9	7	0	2	Ξ	12	13	14	15	16	17	18	19	8	22	23	74	22	36	27	23	8	31	32	33	34	35	38	33	38	33	8	41	42	43	44	45	46	47	48	49	S
	2	2	2	9	2	10	10	10	2	9	19	2	19	10	10	10	2	10	19	2	19	19	9	19	10	9	19	10	9	2	19	2	2	2	9	2	2	19	9	10	9	19	10	19	9	9	9
ь		B	BI	Bl	찚	B1	BI	Bl	B	BI	BI	B	Bl	BI	EI	Bl	EI	B1	BI	B	BI	찚	BI	Bl	Bl	BI	찚	BI	BI	M M	BI							BI		B1	Bl	찚	Bl	BI	찚		BI
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008
Ę	22.978843	22.978843	22.978843	22.979123	22.979192	22.979192	22.979192	22.979765	22.979478	22.979478	22.979478	22.980367	22.979813	22.979813	22.979813	22.98003	22.980015	22.980015	22.980015	22.980183	22.980127	22.980127	22.980305	22.980237	22.980237	22.980237	22.98038	22.98029	22.98029	22.98029	22.98041	22.98041	22.98041	22.980443	22.980287	22.980287	22.980287	22.98022	22.980187	22.980187	22.980187	22.980168	22.980038	22.980038	22.980038	22.979983	22.979815
				20.034343	-	120.03398	120.03398	120.034343	120.034723					120.034047	120.034047	120.033467	120.03379	120.03379	120.03379	20.033382	120.03384	120.03384	120.033225	120.033745	120.033745	120.033745	120.033203	120.033765	120.033765	20.033765	120.03334	120.03334	120.03334	- 1	-	20.033853	20.033853	20.033852	20.033823	20.033823	20.033823	120.034	20.033952	120.033952	120.033952	120.033553	120.034075
Sec	9	vo	9	9	S	9	S	6	9	9	9	9	9	9	7	7	7	7	_	7	_	-	7	7	7	7 1	7	7	7	7	_	٢	60	-	_	-	_	∞	20	8	20	တ	20	20	ω -		2
_	Ξ	12	13	14	73	16	17	18	2	23	21	22	23	24	23	26	22	28	23	8	31	33	34	35	36	37	38	33	8	41	43	44	Ą	8	47	48	6	S	51	\$2	53	ᄶ	SS	28	23	85	59
出	O,	o,	0,	O,	O,	0,	O/	0,	o,	0	0,	0	0,	O,	o,	0,	o,	0,	O,	O,	0,	O,	0,	o,	O/	0,	O,	0/	o,	o,	0,	o,	o,	0	O,	0,	O,	0	o,	O/	0,	O,	Q,	O,	O,	0,	O/
code	B1	BJ	BI	B1	찚	B1	B1	B1	B	BI	Bl	B	B1	Bl	B1	B1	BJ	B1	Bl	BI	Bl	띮	B1	B1	B1	B1	띮	B1	B1	B1	B1	四	B1	B1	BI	BI	띮	B1	B1	B1	B1	띮	B1	Bl	찚	B1	B1
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008
Ľat	22.971742	22.971742	22.972352	22.972538	22.972538	22.972538	22.973072	22.973325	22.973325	22.973325	22.973778	22.973965	22.973965	22.973965	22.974478	22.974642	22.974642	22.974642	22,975117	22.975215	22.975215	22.975655	22.975827	22.976153	22.976697	22.976697	22.976603	22.976728	22.976728	22.976728	22.977113	22.977247	22.977247	22.977247	22.9776	22.977815	22.977815	22.977815	22.978032	22.978308	22.978308	22.978308	22.978365	22.97861	22.97861	22.97861	22.97873
				120.038863	120.038863	120.038863	120.038343	120.038242	120.038242					120.03755	_	120.03699	120.03699	120.03699	120.036878	120.036453	120.036453	120.036115	120.036125	120.035727	120.035605	120.035605	120.035195	120.035252	120.035252	120.035252	120.035277	120.035197	120.035197	20.035197	120.035007			120.034818		120.034578	120.034578	120.034578	120.034222	120.034612	120.034612	120.034612	120.033993
Sec	3 1	3 1	3 12	3 12	4 12	4 12	4 12	4 12	4 12	4 12	4 12	7	4	4 1	4 12	4	4	4 1	4 12	4 12	4 12	4 12	4 12	5 12	5 12	5 12	27	5 12	5 12	5 12	S 12	27	2	S 1.	5	S 12	Z 17	5 12	S 12	5 12	6 12	6 12	6 12	6 12	6 12	6 12	6 12
_	20	21	22	23		25	26	27								33	38	37	38	33	40	42	43	46	848	49	8	51	52	53	24	X	×2	21	50	82	0	1	7	20	4	'n	9	7	00	0	10
出	00	 so	20	ω	ω	 so	ω	20	00	20	00	00	80	60	80	∞	∞	80	00	80	ဆ	ထ	60	00	ω	00	60	80	60	80	80	∞.	∞.	00	ω '	20	O,	0,	0/	0	0	O/	0	0	O.	0,	0,
n)	E	BJ	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	Bl	B1	Bl	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	B1	E	B1	BI	BJ	B1	B1	B1	Bl	B1	B1	B1	B1	B1	B1	B1	B1
	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008

浮球 A 資料(2/3)

	191	895	675	675	675	925	173	173	173	220	382	382	382	165	858	858	858	487	073	073	145	235	235	588	378	378	378	788	805	805	805	248	033	033	033	545	013	010	713	603	603	645	485	485	485	915
Lat	22.91661	22.915895	22.915675	22.915675	22.915675	22.914925	22.91473	22.91473	22.91473	22.914077	22.91382	22.91382	22.91382	22.913165	22.912858	22.912858	22.912858	22.912487	22.912073	22.912073	22.91145	22.911235	22.911235	22.910588	22.910378	22.910378	22.910378	22.909788	22.909805	22.909805	22.909805	22.909248	22.909033	22.909033	22.909033	22.90845	22.908013	22.900013	22.907713	22.906603	22.906603	22.906645	22.906485	22.906485	22.906485	22.905915
Lon	120.07924	120.079587	120.07971	120.07971	120.07971	120.080092	120.079785	120.079785	120.079785	120.080353	120.080463	120.080463	120.080463	120.080742	120.08061	120.08061	120.08061	120.081113	120.081252	120.081252	120.08156	120.081672	120.081672	120.081927	120.082012	120.082012	120.082012	120.082292	120.082178	120.082178	120.082178	120.08274	120.082493	120.082493	120.082493	120.082755	120.08296	120.06290	120.083058	120.082863	120.082863	120.083505	120.08353	120.08353	120.08353	120.083683
Sec	21	21	21	21	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	23	23	23	23	23	23	23	23	23	23	23	23	23	23	07 00	23	23	23	24	24	24	24	24
Min	21	22	23	24	25	56	23	28	53	8	31	32	33	×	35	36	37	33	9	41	42	43	\$	46	47	8	49	S	2	22	23	×	22	8	22	200	20	> -	. 6		4	9	7	80	0	10
H	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	7	14	14	14	14	14	2 :	2 :	74	Ç,	3 2	15	15	15	15	15	15	15
apoo	B1	Bl	Bl	Bl	Bl	B1	B1	B1	Bl	Bl	В	B1	B1	B1	Bl	Bl	Bl	B1	B1	B1	B1	Bl	В	B1	B1	B1	B1	Bl	Bl	B1	B	B1	B	B1	E E	B1	B1	i 6	i 6	12	Bl	B1	B1	B1	B1	Bl
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416000000	41699900B	416999008	416999008	416999008	416999008	416999008	416999008	416999008
Ľ	22.931538	22.931208	22.931208	22.931208	22.930278	22.930007	22.930007	22.930007	22.928723	22.928723	22.928723	22.927808	22.927508	22.927508	22.927508	22.926613	22.926305	22.926305	22.926305	22.925408	22.925108	22.925108	22.925108	22.924225	22.923947	22.923947	22.923947	22.92306	22.922835	22.922835	22.921997	22.921708	22.920585	22.919837	22.91958	22.91958	22.918755	7001677	22.91867	22.917845	22.917593	22.917593	22.917593	22.916863	22.91661	22.91661
Lon	120.071342	120.071538	120.071538	120.071538	120.0721	120.072168	120.072168	120.072168	120.073007	120.073007	120.073007	120.073562	120.073738	120.073738	120.073738	120.074248	120.074412	120.074412	120.074412	120.07489	120.075042	120.075042	120.075042	120.075477	120.075602	120.075602	120.075602	120.076097	120.076042	120.076042	120.07665	120.07677	120.077288	120.077668	120.077767	120.077767	120.07813	120.078097	120.078097	120.078643	120.078758	120.078758	120.078758	120.0791	120.07924	120.07924
Sec	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	2	8	20	20	8	2	23	8	20	20	8	20	20	8	21	21	21	77	27	4 5	2 2	21	21	21	21	21	21	21
Min	56	23	28	23	8	31	32	33	35	×	33	38	33	8	41	42	43	4	45	8	47	8	8	8	2	22	23	×	×	X	88		'n	vo (00 (D. 5	2	: 5	3 5	14	13	16	17	18	13	8
H	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	14	74	14	2	2 ;	7	2 2	2 2	14	14	14	14	14	14	14
apoo	B	E	E E		E	H	H	E E	E	M	E	H	H	E E	E E	E E	Bl	E	B	H	B1	B	E E	H	H	E E	B1	B	E E		E			E 1	i m	i p	E F	i p	i ii	M	E E	E	H		B	Bl
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	4169999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008
Lat	22.945985	22.945683	22.945683	22.945683	22.94491	22.944413	22.944413	22.944413	22.943832	22.943568	22.943568	22.943568	22.942365	22.942475	22.942475	22.942475	22.94169	22.941437	22.941437	22.941437	22.940437	22.940302	22.940302	22.940302	22.939142	22.93888	22.93888	22.93888	22.938028	22.937662	22.937662	22.937662	22.936648	22.936357	22.936357	22.93536	22.935037	22.953037	22.934098	22.933773	22.933773	22.933773	22.932803	22.932488	22.932488	22.932488
Lon	120.061202	120.061437	120.061437	120.061437	120.062173	120.062032	120.062032	120.062032	120.06301	120.0632	120.0632	120.0632	120.063535	120.064005	120.064005	120.064005	120.064778	120.064993	120.064993	120.064993	120.065578	120.065748	120.065748	120.065748	120.066497	120.066693	120.066693	120.066693	120.06748	120.067597	120.067597	120.067597	120.068145	120.068303	120.068303	120.068987	120.069187	120.009167	120.069757	120.069955	120.069955	120.069955	120.070587	120.070768	120.070768	120.070768
Sec	16	16	16	16	16	16	16	17	17	17	17	11	11	11	17	17	17	11	17	11	17	17	17	11	11	11	17	18	29	29	18	18	92	130	20 9	200	90	9 9	9 60	92	12	18	18	18	18	19
Min	38	33	8	41	42	43	\$	45	\$	47	8	49	S	21	22	23	¥	SS	8	21	28	8	0	-	64	m	4	'n	Ø	7	80	O,	2	12	13	7 ,	2 %	2 5	2 62	2	8	21	22	23	24	25
le H	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13		3 5	13	13	13	13	13	13	13
apoo	8 B1	8 B1	8 B1		8 EI	8 EI	8 B1	8 BI	8 B	8 BJ	8 EB	8 EI	8 BI	8 BI	8 B1	8 BJ	80 EM	8 E	8 B1	8 BI	8 B1	8 B1	8 E	8	8 EI	8 EI	8 B1	8 B1	8 BJ	8 E	8 E	8 E	8 M	8 i	m i	20 00	20 E	0 0	0 60	60	8 B1	8 B1	8 B1		8 B1	8 8
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	4169999008	416999008	416000000	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008
Ľat	22.9611	22.960375	22.960147	22.960147	22.960147	22.959413	22.959172	22.959172	22.959172	22.95843	22.958162	22.958162	22.957428	22.957137	22.957137	22.957137	22.956338	22.956067	22.956067	22.956067	22.95524	22.95498	22.95498	22.95498	22.954168	22.953885	22.953885	22.953058	22.952763	22.952763	22.952763	22.951902	22.951598	22.951598	22.950693	722.950407	22.950407	22.949322	22.949268	22.948402	22.948035	22.948035	22.947145	22.946853	22.946853	22.946853
Lon	120.048217	120.048798	120.048997	120.048997	120.048997	120.049618	120.049815	120.049815	120.049815	120.050482	120.050728	120.050728	120.051293	120.05163	120.05163	120.05163	120.052408	120.05257	120.05257	120.05257	120.053385	120.053527	120.053527	120.053527	120.054387	120.05462	120.05462	120.05536	120.055603	120.055603	120.055603	120.05628	120.056508	120.056508	120.057272	120.057453	120.057453	120.036206	120.058317	120.059247	120.059477	120.059477	120.060207	120.060432	120.060432	120.060432
Sec	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	13	15	15	15	15	15	15	15	15	13	15	13	12	12	12	3	2 /	19	0 2	2 12	16	16	16	16	16	16	16
Min	45	46	47	89	49	S	S	22	53	×	SS	22	88	8	0	-	2	m	4	v	δ	7	60	0.	9	Ξ	13	14	15	16	11	18	10	21	77	24	25	07 5	28	2	32	33	×	35	36	33
H	11	11	11	11	Ξ	Ξ	Ξ	Ξ	11	=	Ξ	Ξ	Ξ	Ξ	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	7 0	12	12	12	12	12	12	12	12
code	B1	BI	BI		B	H	H H	H H	BI	B	H	H	H	H H	B1	Bl	B1	H	B1	H H	3 B1	BI	B	H	H	H H	B1	BI	E E	**								i p					B			Bl
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416000008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008

浮球 A 資料(3/3)

1	7	11		_	戶	1	ľŢ	(-)/.)	'																																			
Lat	22.990998	22.990998	22.990947	22.990923	22.990923	22.990923	22.990923	22.990817	22.990787	22.990787	22.990787	22.990048	22.990508	22.990508	22.990508	22.990508	22.990508	22.99022	22.99022	22.989993	22.989887	22.989887	22.989887	22.989887	22.989442	22.989318	22.989318	22.989318	22.989318	22.989318	22.98876	22.988628	22.988628	27.988028	22.98811	22.98811	22.98811	22.987352	22.987245	22.987245	22.987245	22.986727	22.986568	22.986568	22.9865568	
Lon	120.033852	120.033852	120.034358	120.034447	120.034447	120.034447	120.034447	120.034878	120.034953	120.034953	120.034953	120.035373	120.035352	120.035352	120.035352	120.035352	120.035352	120.03597	120.03597	120.0364	120.036562	120.036562	120.036562	120.036562	120.037295	120.037472	120.037472	120.037472	120.037472	120.037472	120.03828	120.03845	120.03845	120.03843	120.039123	120.039123	120.039123	120.040078	120.040283	120.040283	120.040283	120.040828	120.041013	120.041013	120.041013	120.0110.00
Sec	33	33	33	39	33	33	39	33	8	8	8	8	8	8	8	8	용	8	8	8	8	9	8	8	40	8	41	41	41	41	41	41	# :	7 5	T	41	41	41	41	41	#	4	41	41	2 2	ą f
Min	٠,	7	00	0,	13	Ξ	12	14	15	16	17	22	19	20	21	22	23	23	56	28	29	31	32	33	34	35	36	37	38	33	8	41	42	5 ×	3 4	47	48	S	21	23	S	×	X	8	2 %	2
扭	10	10	10	10	2	2	9	10	19	9	10	10	19	10	20	10	2	2	2	2	2	10	10	10	19	19	9	10	10	10	2	2	2	2 5	2 2	19	19	10	19	9	2	9	10	9	2 2	2
apoo	B2ts	BZts	BZts	B2ts	B2ts	BZts	D24.	BZts	B2ts	BZts BZts	277																																			
	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	200	9003	9003	9003	9003	9003	9003	9003	9003	9003	9003	3003	3
MMSI	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	4169999005	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	2
	203	47	47	47	933	92	291	92	9	591	792	113	113	523	523	523	202	20	11	11.	27	133	133	283	283	283	193	795	293	293	157	868	868	2 20	2 20	88	88	88	88	333	866	86	22	86	30.00	2
Ę	22.986307	22.98647	22.98647	22.98647	22.986993	22.987165	22.987165	22.987165	22.987165	22.987165	22.987762	22.988113	22.988113	22.988623	22.988623	22.988623	22.989002	22.989002	22.989577	22.989577	22.989957	22.990033	22.990033	22.990283	22.990283	22.990283	22.990493	22.990562	22.990562	22.990562	22.990757	22.990898	22.990898	22.990696	22.990788	22.990788	22.990788	22.990788	22.990788	22.990933	22.990998	22.990998	22.98992	22.990998	22.990998 22.990998	77.77
_	4057	339	339	339	338	377	377	377	377	377	3142	3397	3397	3227	3227	3227	3217	3217	3162	3162	331	306	306	331	331	331	3145	3127	3127	3127	2895	314	314	514	3117	3117	3117	3117	3117	3567	372	372	1352	3852	3852 3852	4000
Į.	120.03405	120.0339	120.0339	120.0339	120.0338	120.03377	120.03377	120.03377	120.03377	120.03377	120.033142	120.033397	120.033397	120.03322	120.03322	120.03322	120.033217	120.033217	120.033162	120.033162	120.0331	120.03306	120.03306	120.0331	120.0331	120.0331	120.033145	120.033127	120.033127	120.033127	120.032895	120.03314	120.03314	120.05514	120.033117	120.033117	120.033117	120.033117	120.033117	120.033567	120.03372	120.03372	120.03435	120.03385	120.033852 120.033852	10000
Sec	25	32	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	38	38	38	38	38	38	38	38	38	38	38	38	38	38	22	2 00	2 22	33	39	33	33	33	33	33	33	33	3 E	1
Min	10	Ξ	12	13	14	N	16	17	18	13	20	21	22	22	56	73	23	8	33	×	8	37	33	41	42	43	44	45	46	47	48	69	ନ :	٦ s	1 53	쏬	X	8	23	88	S	0	7	m .	4 N	1
出	o,	o,	O/	0,	O,	0,	0,	0	0,	0,	0	0	0	o,	0	O,	0,	0,	6	0,	0,	0	0	O,	0	O,	0, 1	y 0	0	O,	0,	o,	0/	0,	0,	9	10	2	2 2	1						
code	B2ts	B2ts	B2ts	B2ts	BZts	BZts	BZts	BZts	B2ts	BZts	BZts	BZts	BZts	BZts	B2ts	BZts	BZts	B2ts	B2ts	BZts	D213	BZts	B2ts	B2ts	B2ts	B2ts	BZts	BZts	B2ts	B2ts	B2ts	BZts BZts	1000													
MMSI	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	116999003	416999003	416000002	416999003	416999003	416999003	416999003	416999003	416999003	416999003	116999003	116999003	116999003	116999003	3
Σ	4169	4169	4169	4169	4169	4169	4169	4165	4169	4169	4169	4169	4169	4169	4169	4169	4169	4165	4165	4169	4165	4169	4169	4169	4169	4169	4169	4169	4169	4169	4169	4169	4165	9 2	416	4169	4169	416	416	4169	4169	4169	4169	4165	4103	5
Ę	22.899465	22.899215	22.899215	22.899215	22.899052	22.899	22.899	22.899	22.898828	22.898875	22.898875	22.973275	22.974188	22.974482	22.974482	22.97576	22.97576	22.976887	22.976887	22.976887	22.978047	728876.22	78161672	781676.22	7816167	22.980232	22.980232	22.981302	22.981302	23.982085	22.982758	2.982758	22.982758	05/79677	22.983657	22.983657	12.983657	12.983657	72.983657	22.98494	22.98494	22.98494	22.985522	22.985735	22.985735	2
_			22.8						22.8	22.8	22.8		.,	.,	.,			` '	٠,	•	٠,	٠,	.,	.,	- 1	22.9	22.9	.,		22.9	.,		(1)	4 .		722.9			.,	22.5	22.5		.,	. 4		
Ľo <u>I</u>	20.083835	20.083747	20.083747	20.083747	20.083727	20.083722	20.083722	20.083722	120.08363	120.08357	120.08357	20.039655	20.039245	20.039105	20.039105	20.038498	20.038498	20.038012	20.038012	20.038012	20.037335	20.037043	20.036858	20.036858	20.036858	120.03637	20.03637	20.035965	20.035965	20.035527	20.035082	20.035082	20.035082	20.055062	20.034967	20.034967	20.034967	20.034967	20.034967	120.0345	120.0345	120.0345	20.034562	20.034182	20.034182 20.034182	1110
	120	120	120	120	7 120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	130	120	120	120	120	120	120	120	120	120	120	120	120	2 5	2 2	120	120	120	120	120	12	12	12	120	120	2 22	1
ii Se	22	7	2	2	0 2	1 2	Z Z	3 2	4 Z	5. 2.	2	8	23	¥.	XJ W	e W	ey.	55 56	 	ξ. ξ.,	55	35	50	86	11 33	55	33	7	50	8	E.	ಜ	ক ই	გ გ ეკ	2 55	, ,	9. 9.	£.	7	<u>س</u>	첫	w w	e S	<u>~</u>	x x x	1
H	16	. 91	16	16	16	16	16	16 1	16	16	16 1	60	60	20	60	20	ω ω	00	00	00	00	00	00	00	200	20	20	20	ω	00	00	00	ω i	0 0	0 00	00	00	0	0	0,	0,	0,	0	0	0 0	^
apoo	B1	B1	Bl	B1	B2ts	B2ts	BZts	2772	BZts	B2ts	BZts BZts	227																																		
	8006	8006	8006	8006	8006	8006	8006	8006	8006	8006	8006																																			
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	4169999005	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	416999003	27
Ħ	5765	5765	5765	5197	5037	4532	4372	4372	4372	3843	3843	3843	3283	3203	3203	3203	2795	2672	2672	2317	2317	2317	1887	1753	1753	1753	1267	1165	1165	1165	0743	0848	0848	0848	0455	0455	0455	0102	0102	9837	9802	2086	2086	9522	9465	}
Lat	22.905765	22.905765	22.905765	22.905197	22.905037	22.904532	22.904372	22.904372	22.904372	22.903843	22.903843	22.903843	22.903283	22.903203	22.903203	22.903203	22.902795	22.902672	22.902672	22.902317	22.902317	22.902317	22.901887	22.901753	22.901753	22.901753	22.901267	22.901165	22.901165	22.901165	22.900743	22.900848	22.900848	22.900848	22.900455	22.900455	22.900455	22.900102	22.900102	22.899837	22.899802	22.899802	22.899802	22.899522	22.899465	2
[o]	120.083732	120.083732	120.083732	120.083873	120.0839	120.08396	120.08396	120.08396	120.08396	120.084003	120.084003	120.084003	120.084023	120.083962	120.083962	120.083962	120.084003	120.083992	120.083992	120.083535	120.083535	120.083535	120.083943	120.083958	120.083958	120.083958	120.084115	120.0841	120.0841	120.0841	120.08408	20.084012	120.084012	20.084012	120.083992	120.083992	120.083992	120.08388	120.08388	120.083975	120.083812	120.083812	120.083812	120.08383	120.083835	20000
_	120.0	120.0	120.0	120.0	120	120	120.	120	120.	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120	120	120	120	120.0	120.0	7.021	120.0	120.0	120.0	120	120.	120.0	120.0	120.0	120.0	120	120.0	2
Sec		24	24	24	24	24	24	24	74	24	24	22	22	23	25	23	23	23	23	23	X	22	22	22	22	22	22	23	23	23	56	36	3 2	9 %	2 2	26	36	36	26	36	26	26	26	36	28 28	3
Min	11	12	13	14	17		19	8		23	24	22	26	27	28						%	37	38	33	40	41	42	43	44	45	46	47	\$ 1	3 8		\$2	53	X	53		8	0		7		
le Hr	15	75	15	15			7.	. 15	. 13	. 13	15	15	15	15	15	. 15	7.7				15	15	72	77	15	13	. 13	15	15	15	15	15	13	1 ×		15	7.	7.	75	7.	Σ.				2 2	
apos	8 E1			8 B1	8 B1		8 B1	8 B1		8 B1	8 BJ				8 B1	8 B1	8 B1			4 p		8 B1	8 B1	8 B1	8 B1	8 B1	8 B1				2 Z															
MMSI	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	4169999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008	416999008 416999008	2277
2	416	416	416	416	416	416	416	416	416	416	416	416	416	416	416	416	416	416	41,	416	416	416	416	416	416	416	416	416	416	416	416	416	41	41.4	416	416	416	416	416	416	416	416	416	416	416	F